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MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution — UGC, Govt. of India)

VISION
+* To establish a pedestal for the integral innovation, team spirit, originality and
competence in the students, expose them to face the global challenges and become

technology leaders of Indian vision of modern society.

MISSION
+» To become a model institution in the fields of Engineering, Technology and
Management.
++» To impart holistic education to the students to render them as industry ready
engineers.
+»* To ensure synchronization of MRCET ideologies with challenging demands of

International Pioneering Organizations.

QUALITY POLICY

< To implement best practices in Teaching and Learning process for both UG and PG

courses meticulously.
<+ To provide state of art infrastructure and expertise to impart quality education.

% To groom the students to become intellectually creative and professionally

competitive.

% To channelize the activities and tune them in heights of commitment and sincerity,

the requisites to claim the never - ending ladder of SUCCESS year after year.

For more information: www.mrcet.ac.in
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VISION

To become an innovative knowledge center in mechanical engineering through state-of-

the-art teaching-learning and research practices, promoting creative thinking professionals.

MISSION

The Department of Mechanical Engineering is dedicated for transforming the students into
highly competent Mechanical engineers to meet the needs of the industry, in a changing
and challenging technical environment, by strongly focusing in the fundamentals of

engineering sciences for achieving excellent results in their professional pursuits.
Quality Policy

v' To pursuit global Standards of excellence in all our endeavors namely teaching,
research and continuing education and to remain accountable in our core and
support functions, through processes of self-evaluation and continuous

improvement.

v To create a midst of excellence for imparting state of art education, industry-

oriented training research in the field of technical education.
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PROGRAM OUTCOMES

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex engineering
activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and teamwork: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

10.Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.

11.Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments.
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12.Life-long learning: Recognize the need for and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1 Ability to analyze, design and develop Mechanical systems to solve the

Engineering problems by integrating thermal, design and manufacturing Domains.

PSO2 Ability to succeed in competitive examinations or to pursue higher studies or
research.
PS03 Ability to apply the learned Mechanical Engineering knowledge for the

Development of society and self.

Program Educational Objectives (PEOs)

The Program Educational Objectives of the program offered by the department are broadly listed

below:
PEO1: PREPARATION

To provide sound foundation in mathematical, scientific and engineering fundamentals necessary

to analyze, formulate and solve engineering problems.
PEO2: CORE COMPETANCE

To provide thorough knowledge in Mechanical Engineering subjects including theoretical
knowledge and practical training for preparing physical models pertaining to Thermodynamics,
Hydraulics, Heat and Mass Transfer, Dynamics of Machinery, Jet Propulsion, Automobile

Engineering, Element Analysis, Production Technology, Mechatronics etc.
PEO3: INVENTION, INNOVATION AND CREATIVITY

To make the students to design, experiment, analyze, interpret in the core field with the help of

other inter disciplinary concepts wherever applicable.
PEO4: CAREER DEVELOPMENT

To inculcate the habit of lifelong learning for career development through successful completion

of advanced degrees, professional development courses, industrial training etc.
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PEO5: PROFESSIONALISM

To impart technical knowledge, ethical values for professional development of the student to solve
complex problems and to work in multi-disciplinary ambience, whose solutions lead to significant

societal benefits.
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Blooms Taxonomy

Bloom’s Taxonomy is a classification of the different objectives and skills that educators set for
their students (learning objectives). The terminology has been updated to include the following
six levels of learning. These 6 levels can be used to structure the learning objectives, lessons,

and assessments of a course.

1. Remembering: Retrieving, recognizing, and recalling relevant knowledge from long- term
memory.

2. Understanding: Constructing meaning from oral, written, and graphic messages through
interpreting, exemplifying, classifying, summarizing, inferring, comparing, and explaining.
Applying: Carrying out or using a procedure for executing or implementing.

4. Analyzing: Breaking material into constituent parts, determining how the parts relate to
one another and to an overall structure or purpose through differentiating, organizing, and
attributing.

5. Evaluating: Making judgments based on criteria and standard through checking and
critiquing.

6. Creating: Putting elements together to form a coherent or functional whole; reorganizing

elements into a new pattern or structure through generating, planning, or producing.
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COURSE STRUCTURE B. TECH: MECHANICAL ENGINEERING

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
IV Year B. TECH -1- SEM L/T/P/C

3/-/-/3
(R22A0326) Finite Element Methods

COURSE OBIJECTIVES

The general objectives of the course are to enable the students to

1.Introduce basic concepts of finite element methods including domain discretization, polynomial interpolation
and application of boundary conditions

2. Understand the theoretical basics of governing equations and convergence criteria of finite element method.

3. Develop of mathematical model for physical problems and concept of discretization of continuum.

4. To learn the application of FEM equations for Iso-Parametric and heat transfer problems and Discuss the
accurate Finite Element Solutions for the various field

problems

5. Use the commercial Finite Element packages to build Finite Element models and solve a selected range of
engineering problems.

UNIT-I

FUNDAMENTAL CONCEPTS & ONE-DIMENSIONAL PROBLEM: Introduction to Finite Element Method for solving
field problems, Stress and Equilibrium, Strain — Displacement relations, Stress- Strain relations. One -Dimensional
Problem: Finite element modeling, local coordinates and shape functions. Potential Energy approach, Assembly of
Global stiffness matrix and load vector. Finite element equations, Treatment of boundary conditions.

UNIT-1I
Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses.
BEAMS: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses.

UNIT-II

Two Dimensional Problems: Basic concepts of plane stress and plane strain, stiffness matrix of CST element, finite
element solution of plane stress problems. Axi-Symmetric Model: Finite element modeling of axi-symmetric solids
subjected to axi- symmetric loading with triangular elements.

UNIT-IV

Iso-Parametric Formulation: Concepts, sub parametric, super parametric elements, two dimensional four nodes
iso-parametric elements, and numerical integration. Heat Transfer Problems: One dimensional steady state
analysis composite wall. One dimensional fin analysis and two dimensional of thin plate.

UNIT-V
DYNAMIC ANALYSIS: Formulation of finite element model, element matrices, evaluation of Eigen values and Eigen
vectors for a stepped bar and a beam.

TEXT BOOKS:

1. Tirupathi.R. Chandrupatla and Ashok D. Belegundu, Introduction to Finite elements in Engineering. PHI.

2. S Senthil, Introduction of Finite Element Analysis. Laxmi Publications.

3. SMD Jalaluddin, Introduction of Finite Element Analysis.Anuradha Publications.

4. The Finite Element Method for Engineers — Kenneth H. Huebner, Donald John Wiley & sons (ASIA) Pte Ltd.

Malla Reddy College of Engineering & Technology www.mrcet.ac.in




COURSE STRUCTURE B. TECH: MECHANICAL ENGINEERING

REFERENCES:

1. K. J. Bathe, Finite element procedures. PHI.

2. SS Rao, The finite element method in engineering. Butterworth Heinemann.

3. J.N. Reddy, An introduction to the Finite element method. TMH.

4. Chennakesava, R Alavala, Finite element methods: Basic concepts and applications. PHI.

5. K. J. Bathe, Finite element procedures. PHI. 6. SS Rao, The finite element method in engineering. Butterworth
Heinemann.

COURSE OUTCOMES: Upon completion of this course, the students will be able to:

1. Describe the concept of FEM and difference between the FEM with other methods and problems based on 1-D
bar elements and shape functions.

2. Derive elemental properties and shape functions for truss and beam elements and related problems.

3. Understand the concept deriving the elemental matrix and solving the basic problems of CST and axi-symmetric
solids

4. Formulate FE characteristic equations for iso-parametric problems and Explore the concept of steady state heat
transfer in fin and composite slab

5. Understand the concept of consistent and lumped mass models and solve the dynamic analysis of all types of
elements.

Malla Reddy College of Engineering & Technology www.mrcet.ac.in
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COURSE COVERAGE SUMMARY

Chapter
No’s In The
Text Book

Covered

Author

Text Book Title

Publishers

Unit-I
Introduction to FEM and
One dimesional Elements

1&2

SMD
Jalaluddin

Introductio
n of Finite
Element
Analysis

Anuradha
Publications

Unit-II
Trusses & Beams

SMD
Jalaluddin

Introduction
of Finite
Element
Analysis

Anuradha
Publications

Unit-11l
Two dimensional Problems
&Axi-symmetric Models

SMD
Jalaluddin

Introduction of

Finite Element
Analysis

Anuradha
Publications

Unit-1V
Iso-Parametric
Formulation & Heat
Transfer Problems

SMD
Jalaluddin

Introduction of
Finite Element
Analysis

Anuradha
Publications

Unit-V
Dynamic

Analysis

S
Jelalud

Introduction of
Finite Element
Analysis

Anuradha
Publications

Ddin
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INTRODUCTION TO FEM

& ONE DIMENSIONAL PROBLEMS

-



Syllabus

Introduction to Finite Element Method for solving field problems. Stress and
Equilibrium. Strain — Displacement relations. Stress —strain relations.

One Dimensional problem: Finite element modeling, local coordinates and shape
functions. Potential Energy approach, Assembly of Global stiffness matrix and load
vector. Finite element equations, Treatment of boundary conditions, Quadratic
shape functions and its applications.

OBJECTIVE:

To enable the students to understand fundamentals of finite element analysis and
the principle’s involved in the discretization of domain with various elements,
polynomial interpolation and assembly of global arrays. .

OUTCOME:

Identify mathematical model to solve common engineering problems by applying
the finite element method and formulate the elements for one dimensional bar
structures and solve problems in one dimensional bar structures.



UNIT I
INTRODUCTION

Basic Concepts

The finite element method (FEM), or finite element analysis (FEA), is based on
the idea of building a complicated object with simple blocks, or, dividing a complicated
object into small and manage able pieces. Application of this simple idea can be found
everywhere in everyday life, as well as in engineering.

Examples:
® | ego(kid’s play)

® Buildings

Why Finite Element Method?

® Design analysis: hand calculations, experiments,
and computer simulations

® FEM/FEA is the most widely applied computer simulation method in
engineering

® (Closely integrated with CAD/CAM applications

A Brief History of the FEM

11943 - Courant(Variational methods)

11956 @ ----- Turner, Clough, Martin and Topp(Stiffness)
11960 ----- Clough(“Finite Element”, plane problems)
® 1970s ------ Applications on main frame computers

® 1980s ------ Micro computers, pre-and post processors

[11990s--------- Analysis of large structural systems




What is FEM?

Many physical phenomena a in engineering and science can be described in terms of
partial differential equations.

In general, solving these equations by classical analytical methods for arbitrary shapes is
almost impossible.

The finite element method (FEM) is a numerical approach by which these partial
differential equations can be solved approximately.

From an engineering standpoint, the FEM is a method for solving engineering problems
such as stress analysis, heat transfer, fluid flow and electromagnetic by computer
simulation.

Millions of engineers and scientists worldwide use the FEM to predict the behavior of
structural, mechanical, thermal, electrical and chemical systems for both design and
performance analyses.

BASIC STEPS OF FEM
1 Discretization of the structure
2 ldentify primary unknown quantity
3 Selection of Displacement function
4 Formation of the element stiffness matrix and load vector
5 Formation of Global stiffness matrix and load vector
6 In corporation of Boundary conditions
7 Solution of Simultaneous equations
8 Calculation of element strains and stresses
9 Interpretation of the result obtained.

Stepl: Discretization of or structure—(Establish the FE mesh)

The continuum is divided into a number of elements by imaginary lines or surfaces.
The inter connected elements may have different sizes and shapes.

Establish the FE mesh with set coordinates, element numbers and node numbers
The discretized FE model must be situated with a coordinate system

Elements and nodes in the discretized FE model need to be identified by
“element numbers”’and*“nodal numbers.”

Nodes are identified by the assigned node numbers and their corresponding coordinates

F

=y F

A 5
= 9

Shuhive =) FE Mo:[):j:_o(Meshfna)

| § e

Step2:ldentifyprimaryunknownquantit




Primary unknown quantity - The first and principal unknown quantity to be obtained by the
FEM

Eg: Stress analysis: Displacement{u}at nodes

In stress analysis, The primary unknowns are nodal displacements, but secondary unknown
quantities include: strains in elements can be obtained by the“strain-
displacementrelations,”andtheunknownstressesintheelements by the stress-strain relations
(the Hooke’s law).

Step3:Choice of approximating functions

Displacement function is the starting point of the mathematical analysis.

This represents the variation of the displacement with in the element.
Thedisplacementfunctionmaybeapproximatedintheformalinearfunction or a higher-order
function.

A convenient way to express it is by polynomial expressions.
Shape or geometry of the element may also be approximated.

Step4:Formation of the element stiffness matrix & load vector

After continuum is discretized with desired element shapes, the in dividual element
stiffness matrix is formulated.

Basically it is a minimization procedure what ever may be the approach adopted.
For certain elements, the form involves a great deal of sophistication.

The geometry of the element is defined in reference to the global frame.
Coordinate transformation must be done for elements where it is necessary.

{Fle={K}e*{q}e

Step5:Formation of over all stiffness matrix & load vector

After the element stiffness matrices in global coordinates are formed, they are assembled to
form the overall stiffness matrix.

The assembly is done through the nodes which are common to adjacent elements.

The over all stiffness matrix is symmetric and banded.

{F}G={K}G*{a}G

Step6:Incorporation of boundary conditions

The boundary restraint conditions are to be imposed in the stiffness matrix.
There are various techniques available to satisfy the boundary conditions.

. One is the size of the stiffness matrix may be reduced or condensed in its final



form.
* To ease computer programming aspect and to elegantly incorporate the boundary
conditions, the size of overall matrix is kept the same.
Step7:Solution of simultaneous equations
* The unknown nodal displacements are calculated by the multiplication of force vector with
the inverse of stiffness matrix.
. [0]=inverse of [K].[F]
Step8:Calculation of stresses or stress-resultants
* Nodal displacements are utilized for the calculation of stresses or stress- resultants.
* This may be done for all elements of the continuum or it may be limited to some
predetermined elements.
Step9:Display and Interpretation of Results
* Results may also be obtained by graphical means.
* It may desirable to plot the contours of the deformed shape of the continuum.
* Tabulation of results
Graphic displays:(1)Static with contours.(2)Animations

Advantages of Finite Element Method

* Modeling of complex geometries and irregular shapes are easier as varieties of finite
elements are available for Discretization of domain.

* Boundary conditions can be easily incorporated in FEM.

» Different types of material properties can be easily accommodated in modeling from
element to element or even within an element.

* Higher order elements may be implemented.

* FEM is simple, compact and result-oriented and hence widely popular among engineering
community.

* Availability of large number of computer software packages and literature makes FEM a
versatile and powerful numerical method.

Disadvantages of Finite Element Method

* Large amount of data is required as input for the mesh used in terms of nodal connectivity
and other parameters depending on the problem.

* Itrequires a digital computer and fairly extensive

* It requires longer execution time compared with FEM.

* Out put result will vary considerably.




Limitations of FEA

1. Proper engineering judgment is to be exercised to interpret results.

2. ltrequires large computer memory and computational time to obtain in tend results.

3. There are certain categories of problems where other methods are more effective, e.g., fluid
problems having boundaries at infinity are better treated by the boundary element method.

4. For some problems, there may be a considerable amount of input data. Errors may creep up in
their preparation and the results thus obtained may also appear to be acceptable which indicates
deceptive state of affairs. It is always desirable to make a visual check of the input data.

5. In the FEM, many problems lead to round-off errors. Computer works with
alimitednumberofdigitsandsolvingtheproblemwithrestrictednumberofdigits may not vyield the
desired degree of accuracy or it may give total erroneous results in
somecases.Formanyproblemstheincreaseinthenumberofdigitsforthepurpose of calculation improves
the accuracy.

Applications of FEM

1. Mechanical engineering: In mechanical engineering, FEM applications include steady and
transient thermal analysis in solids and fluids, stress analysis in solids, automotive design and
analysis and manufacturing process simulation.

2. Geotechnical engineering: FEM applications include stress analysis, slope stability analysis,
soil structure interactions, seepage of fluids in soils and rocks, analysis of dams, tunnels, bore
holes, propagation of stress waves and dynamic soil structure interaction.

3. Aerospace engineering: FEM is used for several purposes such as structural analysis for
natural frequencies, modes shapes, response analysis and aerodynamics.

4. Nuclear engineering: FEM applications include steady and dynamic analysis of reactor
containment structures, thermo-viscoelastic analysis of reactor components, steady and transient
temperature-distribution analysis of reactors and related structures.

5. Electrical and electronics engineering: FEM applications include electrical network analysis,
electromagnetic, insulation design analysis in high-voltage equipments, dynamic analysis of
motors and heat analysis in electrical and electronic equipments.

6. Metallurgical, chemical engineering: In metallurgical engineering, FEM is used for the
metallurgical process simulation, moulding and casting. In chemical engineering, FEM can be
used in the simulation of chemical processes, transport processes and chemical reaction
simulations.

7. Meteorology and bio-engineering: In the recent times, FEM is used in climate predictions,
monsoon prediction and wind predictions. FEM is also used in bio-engineering for the simulation
of various human organs, blood circulation prediction and even total synthesis of human body.

8 Civil Engineering Structure: Finite element analysis (FEA) is an extremely useful tool in the
field of civil engineering for numerically approximating physical structures that are too complex
for regular analytical solutions. Consider a concrete beam with support at both ends, facing a
concentrated load on its center span. The deflection at the center span can be determined
mathematically in a relatively simple way, as the initial and boundary conditions are finite and in
control. However, once you transport the same beam into a practical application, such as within a
bridge, the forces at play become much more difficult to analyze with simple mathematics.



finite element method vs classical method

Classical Methods Finite Element method

1) Exact equations are formed and exact 1) Exact equations are formed but

solutions are obtained. approximate solutions are formed.
2) Solutions can be obtained for few 2) Solution can be obtained for all problems.

standard cases.
3) For the solution of shape, Boundary 3) No assumptions are made problem is
conditions and loading some assumptions are treated as it is.
made.
4) When material is not isotropic, solution 4) All type of property can handle without
for the problems becomes very difficult. any difficulty.
5) If structure consist more than one 6) If structure consist more than one material
material, it is difficult to analyze. then it can be analyzed without any difficulty.

POTENTIAL ENERGY AND EQUILIBRIUM;
THE RAYLEIGH-RITZ METHOD

noora

In mechanics of solids, our problem is to determine the displacement u of the body shown
in Fig. 1.1, satisfying the equilibrium equations 1.6. Note that stresses are related to strains,
which, in turn, are related to displacements. This leads to requiring solution of second-
order partial differential equations. Solution of this set of equations is generally referred
to as an exact solutton. Such exact solutions are available for simple geometries and load-
ing conditions, and one may refer to publications in theory of elasticity. For problems of
complex geometries and general boundary and loading conditions, obtaining such solutions
is an almost impossible task. Approximate solution methods usually employ potential en-
ergy or variational methods, which place less stringent conditions on the functions.

Potential Energy, 11

The total potential energy IT of an elastic body, is defined as the sum of total strain
energy (U) and the work potential:

[1 = Strain energy + Work potential
) (WP) (1.24)

For linear elastic materials, the strain energy per unit volume in the body is ;0”7 €. For
the elastic body shown in Fig. 1.1, the total strain energy U is given by

U= 1/0Tedv (1.25)
2 ‘_.'

The work potential WP is given by
WP = — fqudV — /uTT as — > u'P, (1.26)
v 5 i

The total potential for the general elastic body shown in Fig. 1.1 is

Principle of Minimum Potential Energy

For conservative systems, of all the kinematically admissible displacement fields,
those corresponding to equilibrium extremize the total potential energy. If the
extremum condition is a minimum, the equilibrium state is stable.




Example 1.2

The potential energy for the linear elastic one-dimensional rod (Fig. E1.2), with body foro

neglected, is
1 [* (du )2
== ~— 1 de—2u
I 3 l EA i N
where i, = u(x = 1). _ ‘
Let us consider a polynomial funiction

u=a +ax + axt
This must satisfy u = Oat x = 0and & = Oatx = 2, Thus,

0 =4a 1
0 =i + 2ﬂ2 + 403
Hence,
@ = —2a,
=a{-2x + x}) oy = —q,
¥
r
. E=1A=1
[~
Y, \‘ 4
-—2——-—~-~—-——7¢!—+2—-——--~—-§——+x
7 1 4
]
Solution from
. mechanics
Approximate
solution
173
G.I'S l
+1.5
Solution from
mechanics
Stress from
Stress +1 + [~ approximate
solution
~ -1
-13
FIGURE E1.2



Then du/dx = 2a,(—1 + x) and
1 2
IT = E_/ 4ai(—1 + x)2dx — 2(—a;)
[H

=2¢1§/ (1~ 2x + x*)dx + 2a,
0

= 243(2) + 2a,
We set ¢I1/da, = 4a3(§] + 2 = 0, resulting in

iy = —-0.75 = —a; = 0.75

The stress in the bar is given by

J=Eix—u=1.5(l—x) [ |

We note here that an exact solution is obtained if piecewise polynomial interpo-
lation is used in the construction of u.

The finite element method provides a systematic way of constructing the basis
functions ¢, used in Eq. 1.30.

STRESSES AND EQUILIBRIUM

A three-dimensional body occupying a volume V and having a surface S is shown in

Fig. 1.1. Points in the body are located by x, ¥, z coordinates. The boundary is con-

strained on some region, where displacement is specified. On part of the boundary, dis-




tributed force per unit area T, also called traction, is applied. Under the force, the body
deforms. The deformation of a point x ( = [x, y,z]") is given by the three components
of its displacement:

u = [u,0,w] (L.1)

The distributed force per unit volume, for example, the weight per unit volume, is the vec-
tor f given by

t=[f.f.£]' (12)

The body force acting on the elemental volume 4V is shown in Fig. 1.1. The surface trac-
tion T may be given by its component values at points on the surface;

T =TT, T (13)

Examples of traction are distributed contact force and action of pressure. A load P act-
ing at a point / is represented by its three components:

Pt' = [Px!Pyﬂpz]? (1'4)

The stresses acting on the elemental volume dV are shown in Fig. 1.2. When the volume
dV shrinks to a point, the stress tensor is represented by placing its components in a




{3 X 3) symmetric matrix. However, we represent stress by the six independent com-
ponents as in

o= [0'1,0'},, o-zbfyzyfxza'rxy]T (15)

where o, 0,, 7, are normal stresses and Tyz» Trzs Txy» &€ shear stresses. Let us consid-
er equilibrium of the elemental volume shown in Fig. 1.2. First we get forces on faces by
multiplying the stresses by the corresponding areas. Writing =F, = 0, 2F, = 0,and
3 F, = 0 and recognizing dV = dx dy dz, we get the equilibrium equations

do, 97Ty 87,
L AL NFNAL SN
ax dy az

ar aa'y 61'3,3

Xy
+ +f, =
X ay 8z fy=0 (1.6)

3Ty, N ar,, 4 do,
ax dy 0z

tf=0

Special Cases

One dimension. In one dimension, we have normal stress o along x and the
corresponding normal strain €. Stress-strain relations (Eq. 1.14) are simply

o = Ee (1.16)

Two dimensions. In two dimensions, the problems are modeled as plane stress
and plane strain.

Plane Stress. A thin planar body subjected to in-plane loading on its edge sur-
face is said to be in plane stress. A ring press fitted on a shaft, Fig, 1.5a, is an cxample. Here
stresses o7;, T, and 7, are set as zero. The Hooke’s law relations (Eq. 1.11) then give us

T _ %
“~FE VE
oy o-)’
€y = rE + E (117
2(1 + v)
Xy = E xy

(a)




77

e, =0
Yy:= 0
Yez =0
(b)

FIGURE 1.5 (a) Plane stress and {b) plane strain.

The inverse relations are given by

1 » 0
o, L
o, b =L 1 0 e, (1.18)
¥ 1 — Ifz 1 — 2
Ty 0 0 L ET

which is used as o = De.

Plane Strain. I a long body of uniform cross section is subjected to transverse
loading along its length, a small thickness in the loaded area, as shown in Fig. 1.5b,can
be treated as subjected to plane strain. Here €, v.,, ¥,; are taken as zero. Stress o,

may not be zero in this case. The stress—strain relations can be obtained directly from
Eqgs. 1.14 and 1.15:

o, 1 — » v

E 0 €,
o, = 1+ )1 = 20) v 1—-w» ? €, (1.19)
T-".‘P’ 0 0 2~ ¥ Txy

D here is a {3 X 3) matrix, which relates three stresses and three strains,

Amnisotropic bodies, with uniform orientation, can be considered by using the ap-
propriate D matrix for the material.

Strain Displacement Relationship for Axi-symmentric element:

Consider an axi-symmetric ring element and its cross section to represent the general state of strain
for an axi-symmetric problem. The displacements can be expressed for element ABCD in the plane
of a cross-section in cylindrical coordinates. We then let u and w denote the displacements in the
radial and longitudinal directions, respectively. The side AB of the element is displaced an amount

u ,and side CD is then displaced an amount u +in the radial direction.



The strain in the tangential direction depends on the tangential displacement v and on

the radial displacement u.
However, for axisymmetric deformation behavior, recall that the tangential

displacement v is equal to zero.
The tangential strain is due only to the radial displacement.

Having only radial displacement u, the new length of the arc AB
is (r + u)dé and the tangential strain is then given by:

e (r+u)dé-rdé u

L=

rdé r
Consider the longitudinal element BDEF to obtain the longitudinal strain and the shear
strain. The element displaces by amounts u and w in the radial and longitudinal
directions at point E.

The element displaces
additional amounts:
(éwilez)dz along line BE and
(éuwler)dr along line EF~

Furthermore, observing lines EF and BE, we see that point F
moves upward an amount (éw/ér)dr with respect to point £
and point B moves to the nght an amount (duw/éz)dz with
respect to point E.




The longitudinal normal
strain is given by:
ow

&, =—

-

oz

The shear strain in the r-z
plane is:

- dr —=y |

Summarzing the strain-displacement relationships gives:
ou u ow ou ow

8=«_ g.=— 8=.\_ ,V=-.__
o 'r ta " ow



ONEDIMENSIONAL ELEMENTS
COORDINATES AND SHAPE FUNCTIONS

1 2 1 2
. =
]

£=-1 £=+1
@ ®)
FIGURE 3.5 Typical element in x- and £-coordinates.
é = 2 (x—-x) -1 34
X, — X, r - x (3.4)

From Fig. 3.5b, we see that £ = —1 at node 1 and £ = 1 at node 2. The length of an
element is covered when £ changes from —1 to 1. We use this system of coordinates in
defining shape functions, which are used in interpolating the displacemnent field.

Now the unknown displacement field within an element will be interpolated by a
linear distribution (Fig. 3.6). This approximation becomes increasingly accurate as more
clements are considered in the model. To implement this linear interpolation, linear
shape functions will be introduced as

[y
|
Pre

Ni(€) = (3.5)

+ W
oy

Ni(E) = (3.6)

M 1

The shape functions N, and N, are shown in Figs. 3.7a and b, respectively. The graph of
the shape function N, in Fig. 3.7a is obtained from Eq. 3.5 by noting that N, = 1 at
£ = ~1,N, = 0at £ = 1,and N, is a straight line between the two points. Similarly, the
graph of N, in Fig. 3.7b is obtained from Eq. 3.6. Once the shape functions are defined,
the linear displacement field within the element can be written in terms of the nodal
displacements g, and g, as

u=Ngq + Ng (3.7a)

Uynknown #Linear

i

|

23] 4

e q

1 @ 2 1 @ 2

FIGURE 3.6 Lincar interpolation of the displacement field within an elernent.
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1 ! \Q |
| | l
i |
I - ¢
1 | | ‘ ] £ 1 2
=0
£= -1 ¢ £= +1
u
{a) (b)
2
u=Nug + Nyg,
q1
1 2 £
(c}
FIGURE 3.7 {a} Shape function &, (b) shape function N,, and (c) linear interpolation using
N, and N,,
or, in matrix notation, as
where
N = [Nl ; NZ] and q = {ql, qz]T (3.8)

l_n these equations, q is referred to as the element displacement vector. It is readily veti-
fied from Eq. 3.7a that u = dratnode 1, u =

at nod ies linearly
(Fig. 3.7¢). % e 2, and that u varies
It may be noted that the transformation from : tten in
terms of N, and N, as om x 10 ¢ in Eq. 3.4 can be wri
¥=Nxy + Nyx, (39)

Comparing Eqgs. 3.7a and 3.9, we see
are interpolated within the element
referred to as the isoparamerric fo

that both the displacement  and the coordinate ¥
usmg the same shape functions N, and N,. This 8



Degrees of Freedom in FEA:

e Degree of Freedom (DoF) is a “possibility” to move in a defined direction. There are 6
DoF in a 3D space: you can move or rotate along axis X, y or z. Together, those
components describe a motion in 3D. DoF in FEA also do other things : they control
supports, information about stresses and more.

e Degree of freedom or DOF means the number of independent coordinates a structure can
move. There are 6 DOF possible for a structure. They are movement onx,y and z axis and
rotation about these axis.

e What ever be the field, degree of freedom, do fin short, represents the minimum number of
independent coordinates required to specify the position of every mass in the system
uniquely.

e eg.A simple spring mass system as shown in Fig. which is constrained to move only in the
vertical direction requires the displacement x only to specify the position of the mass m.
Hence it has one degree of freedom.

e |f we attach another spring and another mass below the first mass then each
masswillundergodifferentdisplacementandhenceweneedtospecifyx1 and x2 which are the
displacements of masses 1 and 2 respectively. Hence this has 2 dof.

LLLLLLL

K
g Xl l_ m,
S ¥,
X
m

‘ [— 2
X

-3

Kk

» Now coming to FEM when we want to find the stresses in a member subjected to
axial loads such as the stepped bar shown below. since the bar is long and thin we
can assume that the longitudinal displacements are significantly higher than the
lateral displacements. So neglecting this lateral displacement we can discretise this
system into two 2 noded elements.

D



e When we use a 2 noded element 1t 1s assumed that there 1s only on degree of

treedom at each node namely the axial displacement of that node. So total degrees
of freedom in this case for one element 1s 2.

e On the other hand in a beam element that 1s subjected to only vertical transverse

loads. we require minimum 2 dofs. Why 1s this so?

e Take the case of a simply supported beam subjected to a central point load as

shown 1n the figure below.

| .
4 : 3

Wy

s =, o o
" e .
Poaninl ( h N
E E E% RN
TR

If we specify the position of every point in the beam with only one variable
namely the transverse displacement w. then if we look for two symmetrically
placed points along the beam such as points 1 and 2. the displacements will be the
same and equal to w. So if have to specifically refer to only one point uniquely we
need one more variable that can be used to identify that point. Hence we introduce
another variable namely the slope of the deflection curve.

So a simple beam subjected to only vertical loads can be modelled using a beam
element that has 2 dofs per node namely So total dof s for one two noded beam
element 1s 2 x 2 =4.

It the beam 1s subjected to a load as shown below
JJ

| L

2 — o

Then there is an axial displacement that comes into the picture additionally. So we
have to introduce one more dof namely axial displacement u at each node thus
bringing the dof per node to 3 and total dof to 6.

Similarly a 3 noded triangular element used to model a thin rectangular fin has one
dof (variable) per node namely temperature so total dof 1s 3 x 1 =3. In a structural
application there will be two dof per node namely u and v displacements. Hence
total dof for a 3 noded triangular element for stress analysis will be 3 x 2 =6.

A 4 noded tetrahedral solid element has 3 dof per node (u.v.and v displacements)
when used in structural applications so total dofis 4 x 3 =12.

So we need to understand the physical behaviour of the system and model it
appropriately.




Shape Functions:

In the finite element analysis aim is to find the field variables at nodal points by
rigorous analysis. assuming at any point inside the element basic variable is a function
of values at nodal points of the element. This function which relates the field variable at
any point within the element to the field variables of nodal points is called shape
function. This is also called as interpolation function and approximating function. In
two dimensional stress analysis in which basic field variable 1s displacement,

Shape functions are the polynomials meant to describe the variation of primary
variable along the domain of element.

u=XNu,v=ZN,v, ...(5.1)

! iy B4
where summation is over the number of nodes of the element. For example for three noded triangular element.
displacement at P (x, y) 1s

u=XNu =Nyu+Nyu;+ Nyu,

V=ZN,~V'- =va1 + l\r‘_)V2+ N31'3

u
L4l
, Jul M 0 N 0 N 0])w|
e ‘["I_[O N‘ 0 N; 0 N3:| -
3
V3

1y 1y

Uy Uy

[N 07 |u [Nl Ny Ny B 0 o]u3

b

0 Ny 0 0 0 N N N|lv
6] Va
vy bg

o} = [~]{s},
Ixl 2%6 §x]
where ¢ 1s displacement at any point in the element
[V] shape function

{0}, isveetor of nodal displacements

Similarly in case of 6 noded triangular element

{0} = [~] {é},

2x1 2x12 12x1



POLYNOMIAL SHAPE FUNCTIONS

Polynomials are commonly used as shape functions. There are two reasons for nusing them:
(1) They are easy to handle mathematically 1.e. differentiation and integration of polynomials is easy.

(1) Using polynomial any function can be approximated reasonably well. If a function is highly
nonlinear we may have to approximate with higher order polynomial. Fig. 5.1 shows approximation
of a nonlinear one dimensional function by polynomials of different order.

u u u

R ST o3 g @
o 2

(&) Constant (b) Linear {c¢) Quadratic

Approximation with polynomials

One Dimensional Polynomial Shape Function
A general one dimensional polynomial shape function of nth Order 1s given by,

N‘:.\"=al+ Oy X+ (13.\’2+ ...a"‘l.\'"

In matrix form y = [G] la}
where [c]= [1..1:,.\:2 x"]

and {a}T=[al o, 0 ---ann]

Thus in one dimensional #® order complete polynomial there are m = n + 1 terms.,
Two Dimensional Polynomial Shape Function

A general form of two dimensional polynomial model is

>
U, V)= O+ A X+ OV + A X+ AV AV + A X AV
1 2 3 4 5 6 7 -

...(3.6)
VX, P) =+ R 2 X+ Ay 3 ¥+ . ¥ Arg ¥
= Ju(x, | |G 0 -
o ORI CIOE KT 67

where G=[lxyxxy)y .yl

{oz}r=[¢:tl oy o oy . 0y, ]

It may be observed that m two dimensional problem. total number of terms m m a complete nth degree
polynomial 18

n+1)(n+2
m=(—)i—' ..(5.8)

For first order complete polynomial n = 1,
( +1)(1+2) 3

-

m=




Another convenient way to remember complete two dimensional polynomual is in the form of Pascal
Trangle shown i Fig. 5.2

Constant 1
X / Lmnear 3
Vil
X5 - Quadratic 6
Xy 13

Quartic 15

XX
> ] x 5 Quintic 21
o V_ Hexadic 28

Fig. 5.2 Pascal triangle
Three Dimensional Polynomial Shape Function

A general three dimensional shape fiunction of nth order complete polynomial is given by

2
WX, ¥, D)=+ U X+ A Y+ U+ U X+ L+ Ay X 2

2 !
Y(x, ¥, ;) Sl T A g2 X TR 3 ¥+ Xy 42 T R s X+ cc. T &pyy X" l: ...(3.9)

1.

WX, Z) = @iy F Bpin X+ Wiis P G g T H Ry X

or 8(x,v,z)=1v(x,»,z) r=[Gl{e}=| 0 G, 0O |{a} ..-.{5.10)
wix, v, :)[ 0 0 G
Where G, =[lxyz P xy)y* stz ..2 ... 2]
and la} =[o, @y a5 . ary,]

It may be observed that a complete nth order polynomial in three dimensional case is having number of
terms /n given by the expression
(m+1)(n+2)(n+3)
y 6

m

(1+1)1+2)0+3) _,

Thus whenn=1. m = 2

ie. G+ 0, X+ 0y Y+, =



5.3 CONVERGENCE REQUIREMENTS OF SHAPE FUNCTIONS

Numerical solutions are approximate solutions. Stiffness coefficients for a displacements model have higher
magnitudes compared to those for the exact solutions. In other words the displacements obtained by finite
element analysis are lesser than the exact values. Thus the FEM gives lower bound values. Hence it is desirable
that as the finite element analysis mesh is refined. the solution approaches the exact values. This requirement
is shown graphically in Fig. 5.4. In order to ensure this convergence criteria. the shape functions should

satisfy the following requirement:

0 Fxact solution . NG o =

—/’;::
-5 -1 //

FEM solubton
10 +

/

% Error

Fig. 5.4 Convergence of FEM solution

. The displacement models must be continnous within the elements and the displacements must be
compatible between the adjacent elements. The second part implies that the adjacent elements must
deform without causing openings. overlaps or discontmuities between the elements. This requirement
1s called *compatibility requirement’

According to Felippa and Clough this requirement 1s satisfied, if the displacement and its partial
derivatives upto one order less than the highest order derivative appearing in strain energy function
1s continuous, Hence in plane stress and plane strain problems, it is enough if continuity of
displacement is satisfied, since strain energy function includes only first order denivatives of the
displacement (SE = % stress ~ strain). It implies, it is enough if C° continuity is ensured in plane
stress and plane strain problems. In case of flexure problems (beams, plates, shells) the strain

2 -
M_ e sia-grd =]
d‘.

energy terms mclude second denvatives of displacements | like %

Hence to satisfy compatibility requirement. not only displacement continuity but slope continuity
( ' —continuity) should be satisfied. Hence in flexure problems displacements and their first
derivatives are selected as nodal field vanables,

2. The displacement model should include the rigid body displacements of the element. It means in
displacement model there should be a term which permit all points on the element io expenence the
same displacement. It 1s obvious, if such term do not exists, shifting of the ongin of the coordinate
system will cause additional stresses and stramns, which should not occur. In the displacement
model,

H=0+ Uy X + Ay ¥

the term @, provides for the ngid body displacement. Hence to satisfy the requirement of ngid
body displacement. there should be constant term in the shape function selected.




3. The displacement models must include the constant strain state of the element. This means, there
should exist combination of values of polynomial terms that cause all points in the element to
experience the same strain. One such combination should occur for each possible strain. The necessity
of this requirement is understood physically, if we unagine the refinement of the mesh. As these
elements approach infinitesimal size, the strains within the element approach constant values. Unless
the shape function term includes these constant strain terms, we cannot hope to converge to a
correct solution. In the displacement model,

VE e+ Oga X+ Q3+ Uy X4 a4 Q"
, and X,y provide for umform strain £,

ay and @45 provide for uniform strain €,

An additional consideration in the selection of polynonual shape function for the displacement model
15 that the pattern should be independent of the orientation of the local coordmate system. This property 1s
known as Geometric Isotropy, Spatial Isotropy or Geometric Invariance. There are two simple guidelines
to construct polynomial series with the desired property of isotropy:

1. Polynomial of order » that are complete, have geometric isotropy.

2. Polynomuial of order » that are not complete, yet contaimn appropriate terms 1o preserve ‘symmetry’

have geometric isotropy. The simple test for this property is to interchange x and y in two dimensional
problems or x, y. 2 in cyclic order wn three ditnensional problems and see that the total expression do
not change. However the arbitrary constants may change.
For example, we wish to construct a cubic polynomial expression for an element that has eight
nodal values assigned to it. In this situation. we have to drop two terms from the complete cubic
polynomial which contains 10 terms. To maintain geometnic isotropy drop only terms that occur in
symmetric pairs i.¢. ¥, ¥ or x4, v1%. Thus the acceptable ¢ight term cubic polynomials shape
function exhibiting geometric isotropy are

Ay @y X+ Uy + Oy X+ Agxy + Uy + @y Py + ag xy°

and @4+ @y X 4 Uy U X Ay + UV + @y X gy

2

U4 Oy X + U3y + U X2+ agxy + 037 + &y ¥y + ag vy?

i
N s R O A S o 0 U U P L N S I

In finite element analysis, the safest approach to reach correct solution is to pick the shape fimctions
that satisfy all the requirements. For some problems, however, choosing shape functions that meet
all the requirements may be difficult and may mvolve excessive numerical computations. For this
reason some investigators have ventured to formulate shape functions for the elements that do not
meet compatibility requirements. In some cases acceptable convergence has been obtained. Such
elements are called ‘non-conforming elements’. The main disadvantage of using non-conforming
elements is that we no longer know in advance that comrect solution is reached.

Characteristic of Shape function

1. Value of shape function of particular node is one and is zero to all other nodes.
2. Sum of all shape function is one.
3. Sum of the derivative of all the shape functions for a particular primary variable is zero.




Example 1.1:4; =200 mm?, E;=E>;=E=2x10°N/mm?

AgleOmmZ, l;=101=100 mm
P3=1000 N. Find: Displacement and stress & strain.
AN EM AR E@
// ‘
3 PR S—
l
b— o f——a
fe———— )y ——
X
D, D,
[KU}] _ Al g 1 -1 _ 10 4 =4 dy (E.16)
j 1 1 -4 4| d,
D®, @y
12 -1 1 -2 2| d;

Let overall stiffness matrix [K] = [KV] + [K®)]

© P, Iy

4 -4 0] 2 -2 0
K|=10%| -4 442 -2|®, =2x10%|-2 3 -1

0 -2 2] @y 0 -1 1

In the present case, external loads act only at the node points; as such, there is no need to

assemblethe element load vectors. The overall or global load vector can be written as

P P,
P={r'={0
Ps 1

2 =2 07 (®, Py
2%x10°= | =2 3 =1|{ @, v={0
0 -1 1] |&, 1

3 —-1|[d; 0
2x10° =
[-1 1 ] { D4 } { 1 }
By solving the matrix

®>=0.25 x 10%cm and
@3 =0.75 % 10°cm

oJLn
2 Ko
| oG
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e

Derive element strains and stresses.

Once the displacements are computed, the strains in the elements can be found as
1) 1)
o) -af _@,-0,

_ -7
™ == - 0.25x 10

dif
N = L for el tl=
£ Or elemen

= 0.50%x 1077

) 'ﬁqt" —
E = for element 2 = )

The stresses in the elements are given by
e = EWeM = (2x107) (0.25%1077) = 0.5 Njem?
o = EP el = (2x107)(0.50x1077) = 1.0 N/cm?

Example 1.2:A thin plate as shown in Fig. (a) has uniform thickness of 2 cm and its modulus
of elasticity is 200 x 10* N/mm? and density 7800 kg/m?. In addition to its self-weight the plate
is subjected to a point load P of500 N is applied at its midpoint.
Solve the following:

(1) Finite element model with two finite elements.

(i) Global stiffness matrix.

(i)  Global load matrix.

(iv)  Displacement at nodal point.

(v) Stresses in each element.
(vi)  Reaction at support.
150 mm

—
L L L

-—PP 112.5 14— 300 1 300

mm mm mm
600 i -
mm ; ;
P P

500 N
300
2 mm

e

e k=
(a) (b)
1) The tapered plate can be idealized as two element model with the tapered area

converted to the rectangular equivalent area Refer Fig. (b). The areas Ajand A»
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are equivalent areas calculated as
A=1T2S  605 em?
T —
1128475 5

2 2

A 2 =18.75 em’

(i) Global stiffness matrix can be obtained as

1 -1 0 0 0 0
K = AL (-1 1 o], EAs jo 1 -
Ly [0 00 Ly [0 -1 1

1 -1 0
200 x 103 x 2625 x 102 |1 1 o
300 0 0 0

0 0 0
+ 200 x 10 x 1875 x 102 |90 1 -1
0

300 | KON |
1 -1 0 0 0 0
= 0175 x 107 |-} 1 0 . 7 (01 -1
X 0 0 0 + 0.125 x 10 0 -1 1
| s o 0]
= 107 [-0175 03  -0.125],
L0 -0125 0125)
(ii)  The load matrix given by
e Al 3 T o *
AL * A, L
¥ oo 1, o SAE ] 4 P
& |73 2
Ag Ly 0
Lo s R e
2625 x 104 x 03 x 78 x 104 _ ¢ 3
2 - ’
12625 x 104 x 03 x 7.8 x 104 _ 18.75 x 10 x 03 x 7.8 x 10* _ p|
- 2 2
18.75 x 10+ x 0.3 x 7.8 x|104
- 2 ' ~
30.75 - R,
_ 13075 + 21.93 + 500
21.93

(iv)  The displacement at nodal point can be obtained by writing the equation in global
form as

DEPARTMENT OF MECHANICAL ENGINEERING



(k] (3] (F)

0.175 -0175 0 5, 30.75 - R}
o7 |-0.175 03 -0125| | 8, | _ | 55268
0 -0.125 0.125| | 8, 91.93

Using elimination approach and eleminating first row and column in which
reaction occurs.

03 -0.125 8y 552.68
107 =
-0.125 0125 83 21.93
8 = 0, 8 = 328 x 10~ mm, 83 = 3.45 x 10 mm.
(v) The stress in the element 1
_ E & | 200 x 10 4
6 = ¢ [ 1] [52 ] = g X 328 x 10
= 2.18 x 10-! MPa
stress in the element 2

§ 3
2 ]= 200 x 10° [-89 + 83] = 0.11 x 10-! MPd

E
62 = 1, (-1, 1] [ 83 300

(vi) The reaction node 1

R, = -ELﬁ 8y - 30.75]
1

= 0.175 x 107 x 3.28 x 10~¢ - 30.75 = 543.25.

Penalty Approach :

— In the preceding problems, the elimination approach was used to achieve simplified
matrices. This method though simple, is not very easy to adapt in terms of algorithms
written fix computer programs.

— An alternate method to achieve solutions is by the penalty approach. By this approach
a rigid support is considered as a spring having infinite stiffness. Consider a system as
shown in Fig.

Structure

‘ e

dof 1
Fig. Penalty Approach

C

— The support or the ground is modelled with a high stiffness spring, having a stiffness
C. To represent a rigid ground, ¢ must be infinity.

— However, instead of introducing an infinite value in the calculations, a substantially
high value of stiffness constant is introduced for those nodes resting on rigid supports.

g:z.a{;}:‘

SR

vy
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— The magnitude of the stiffness constant should be at least 10* times more than the
maximum value in the global stiffness matrix.

— From Fig. 1.6, it is seen that one end of the spring will displace by a;. The displacement
Q; (for dof 1) will be approximately equal to a; as the spring has a high stiffness.

— Consider a simple 1D element with node 1 fixed.

KQ = F

MIN R
k2l k22 QZ | F2

— At node 1, the stiffness term is ,,C* is introduced to reflect the boundary condition
related to a rigid support. To compensate this change, the force term will also be

modified as:
[k,,+c k,zHQ,} {F,+Ca,}
kyy  ky ] (Q2 K,

— The reaction force as per penalty approach would be found by multiplying the added
stiffness with the net deflection of the node.

R=-C(Q-a)

— The penalty approach is an approximate method and the accuracy of the forces depends
on the value of C.

Example 1.3: Consider the bar shown in Fig.. An axial load P =200 x 10* N is applied as

shown.Using the penalty approach for handling boundary conditions, do the following:
(a) Determine the nodal displacements
(b) Determine the stress in each material.

(c) Determine the reaction forces.

+—300 mm—><«—400 mmﬂ
7
7 P 7
74»—- & > - - 4 > X

17 2 ® 36
27 @
Aluminum Steel
A;= 2400 mm? A,= 600 mm?
E;=70X 10°N/m?  E,=200 X 10° N/m?
Fig. 1.7

e
3 -(.E‘(Q‘

&
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(@ The element stiffness matrices are

1 2 « Global dof
W = JOX 10° X 2400| 1
B -1

-1
300 1
and

2 3
K = 200 X 10° x 600] 1 -1
400 -1 1

The structural stiffness matrix that is assembled from k' and k? is

1 2 3 -

056 -0.56 0 ‘

K = 10% —-0.56 0.86 -0.30 :

L x ”0 -0.30 030 |

The global load vector is

F =10, 200 x 103, 0]T
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Now dofs 1 and 3 are fixed. When using the penalty approach, therefore, a large numberC is
added to thefirst and third diagonal elements of K. Choosing C

C=10.86x 10°] x 10*
Thus, the modified stiffness matrixis
8600.56 —0.56 0
K=10°% -056 086 —0.30 |
0 -0.30 8600.30 |
The finite element equations are given by

860056 —-056 0 (0. 0

100 -056 08 —030 { Q;p = {200 x 10°
0 —-030 860030 |0 0

which yields the solution
Q=[15.1432x 10, 0.23257, 8.1127 x 10 Jmm

(b) The element stresses are

- : x 1078
oy =70 x 16° x L1 1]{151432 10 }

300 0.23257

= 5427 MPa
where 1 MPa = 10° N/m?= 1N/mm?. Also,

1 [-1 1]

0.23257
o, =200 X 10° X —

400 8.1127 X 107°

= —116.29 MPa

(© The reaction forces are
R =—CQ
=—[0.86 x 10'°] x 15.1432x 10¢
=—-130.23x 10°N
R3; =— CQ;s
=-[0.86x 10'°] x 8.1127x 10°
=—-69.77x 10° N

Example 1.4:In Fig. (a), a load P = 60 x 10° N is applied as shown. Determine the
displacement field,stress and support reactions in the body. Take E = 20 x 10°N/mm?.

[ata\]
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oJLa
2 Ko

£5g

© 12mm

250 m\m2 ki

, \ o B'e B—»X.

P
e—150 mm—+—150 mm-—»
7
(@)

-

% ¢—> P Y :——»-X
=y |

1 ©) 2 ©) 3

L
~ 12mm
Fig.
The boundary conditions are Q= 0 and Q3= 1.2 mm. The structural stiffness matrix K is
0x10°x250 1 71 0
K= =1 2 -
150

0 -1 1

andthe global load vector F is

F =0, 60 x 10%, 0]"
In the penalty approach, the boundary conditions Qi= 0 and Qz=1.2imply the
followingmodifications: A large number C chosen here as C = (2/3) x 10'°, is added on to the
1%tand 3" diagonal elements of K. Also, the number (C x 1.2) gets added on to the 3"component
of F. Thus, the modified equations are

The solution is 0’ 20001 -1 0 o, 0
12 a1 Rop={e0x1e
0 -1 20001 || Qs 80.0 x 10’

Q =1[7.49985 x 10, 1.500045, 1.200015]"mm

The element stresses are

1 (-1 1][7.49985 X 107
= 3% —
1= 200X 107X 155 {1.500045 }
= 199.996 MPa
_ 1 [-1 1]f1.500045
72 =200 X 10° X 755 {1.200015}
— —40.004 MPa

The reaction forces are
R; =-Cx 7.49985 x 107
=49.999 x 10°N
R3 =—Cx(1.200015 - 1.2)
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=10.001 x 10°N

Effect of Temperature on Elements:

When any material is subjected to a thermal stress, the thermal load is additional load acting
on every element. This load can be calculated by using thermal expansion of the material due

to the rise in. temperature.
Thermal stress in material can be given by
Gt = Ee
Where &~ thermal strain
E = modulus of elasticity
e~=a At
a= coefficient of linear expansion of material
At= change in temperature of material.
Then the thermal load is given by
Where, Ft =i A= AEa At
A = Area of the bar.

Mééé
©
®
T\'YETQY\

[ Lq > Ly >
Fig.
Consider the horizontal step bar supported at two ends is subjected to athermal stress and
load P at node 2 as shown in Fig. .

Thermal load in element 1

Ft, -1
[F,] = -Ft(;?--AlEaAt (1)
Thermal load in element 2
[0 ] 0
= | Ftaa |= -1
[FQ] ] Ft3 ) A2 E o At 1
0 - A EaAt
P A EocAt - AgEoAt + P
FI = |Fy] + [Fq] + =
F) = (R + (Rl + | P -

Example 1.5 : An axial load P =300 x 10° N is applied at 20°C to the rod as shown in Fig.
.The temperature is then raised to 60°C.



(a) Assemble the K and F matrices.

(b) Determine the nodal displacements and element stresses.

'——zoomma?——soomm_.‘

2 7
l¢ ) —_— X

Z) 21 3

® L

Aluminum Steel
E; = 70 X 10° N/m? E, =200 X 10° N/m?
A; = 900 mm? A, = 1200 mm?
a, = 23X 10~ % per'C a, = 117 X 1078 per"C
Fig.

(@ The element stiffness matrices are

70 X 10° X 900 1 —1]

1 ——

¥ 200 [-1 o | P
200 x 10° x 1200[ 1 —1]

K = 300 [—1 | N/mm

315 -315 0
K =10°| —-315 1115 -800 [N/mm
0 -800 800

Now, in assembling F, both temperature and point load effects have to be considered.

The element temperature forces due to AT = 40°C are obtained as

] Global dof

_11 "
91=?0x103><900x23><10"5x40{1}2 N
~1]12

62 = 200 X 10° X 1200 X 11.7 X 107¢ x 40 1 13 N

Upon assembling ©', 67, and the point load, we get

~57.96
F = 10° 57.96 — 112.32 + 300
112.32
F=103[-57.96, 245.64, 112.32]'"N

(b) The elimination approach will now be used to solve for the displacements. Since dofs
1 and 3 are fixed, the first and third rows and columns of K, together with the first and
third components of F, are deleted. This results in the scalar equation

~nJLa

SRR,
% gt
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UNIT 1

TUTORIAL QUESTIONS
1. Derive the equations of equilibrium for 3D body
2. Explain about plane stress and plane strain
3. Describe advantages, disadvantages and applications of finite element analysis
4. The following equation is available for a physical phenomena
2
ZT;’ -10=5; 0<X1, Boundary Conditions; y(0) =0, y(1) =0, Using Galarkin method of weighted residual find an
approximate solution of the above differentialequation
5. Use Finite Element method Calculate nodal displacements and element stresses
_A1=50 mm? 8 =30 mm?
5 < 5 Az = 25 men’®
e SR = ety O Y
/]
/]
P A Ak al
I : ol » >
100 mm 100 mom 100 mm
E =200 Gpa

oL
‘;_"_'\‘

5\4‘
g{”‘a Q
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UNIT I
ASSIGNMENT QUESTIONS
1. Describe the standard procedure to be followed for understanding the finiteelement
method step by step with suitable example.

2. Derive the stiffness matrix of axial bar element with quadratic shape functions based on

firstprinciples.
3. An axial load P=300KN is applied at 20° C to the rod as shown in Figure below.The
temperature is the raised to 60° C .

a) Assemble the K and F matrices.
b) Determine the nodal displacements and stresses.
l‘“* 200 mm =i‘ 300 mm ——»‘
1 % — [ % — X
Z 21 7 3
FIGURE 2)
Aluminum Steel
E; =70 %X 10° N/m? - E, = 200 X 10Y N/m?
Ay = 900 mm? A, = 1200 mm?
@, = 23 X 107 %per"C a, = 11.7 X 107%per°C



2,

UNIT 2

TRUSSES
&
BEAMS

-«



Syllabus

TRUSSES: Element matrices, assembling of global stiffness matrix, solution fordisplacements,
reaction, stresses.

BEAMS: Element matrices, assembling of global stiffness matrix, solution for
displacements, reaction, stresses.

OBIJECTIVE:

To learn the application of FEM equations for trusses and Beams

OUTCOME:

Derive element matrices to find stresses in trusses and Beams



UNIT IT

Analysis of Trusses

— The links of a truss are two-force members, where the direction of loading is along the
axis of the member. Every truss element is in direct tension or compression.

— All loads and reactions are applied only at the joints and all members are connected
together at their ends by frictionless pin joints. This makes the truss members very
similar to a 1D spar element.

F F F
R A
Fig. 1.28 Truss
) ( ) The direction cosines / andm can be expressed as:
XY _
; [=cos@="2_"
i L
E . =0
: m=coshp=sin@="2_""
; (Ya=¥)) ¢ I,
§ Jamx Y= (yryY
Qi =ql/+qm
RO R ST QR =qlt+tqm
AFE
L2 m i ]
| Im  m* —Im —m?
K ]= Lee| -? —lm P Im '

¢ | |

|~Im —m* Im  m* |

e Thermal Effect In Truss Member

_1‘||

(1) Thermal Load ,P= A E ¢ {—m |

eee] l|| |
Lm |

— Ee l
(2) Stress for an element, G = _[— —m m]q —E, oAt
[

g: R
1T g o
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(3) Remaining steps will be same as earlier.

Example 1.6: A two member truss is as shown in Fig. The cross-sectional area ofeach member
is 200 mm? and the modulus of elasticity is 200 GPa. Determine the deflections,reactions and
stresses in each of the members.

3000

e

! 4000

 10kN

Fig.

In globalterms, each node would have 2 dof. These dof are marked as shown in Fig.1.31. The
position of the nodes, with respect to origin (considered at node 1) are as tabulated below:

Node Xi Yi
1 0 0
2 4000 0
3 0 3000
Q
1 &
o 3 (0, 3000)
Lo
- % 1.0 — 2 (4000, 0)
¢ 1 10kN
Fig.
For all elements, A=200 mm?
and E=200 x 10° N/mm?
The element connectivity table with the relevant terms are:
, , AE X j— Xi i— Vi
Element | Ni | Nj [ /= /& =x)"=(y —p)’ \/; = ]l m :y]l Y P | m | Im
4000 -0
—32 —_0) _
M | 1]2] ©99 O 110000 | 4000 | 2=2=0] 1 | 0 | 0
= 4000 _ 4000
0= — 0)? S0 1 3000
() 213 8000 \jOOO =0.6 | 0.64 | 0.36 | -0.48
— 5000 _Tog | 2000

As each node has two dof in global form, for every element, the element stiffness matrix would
be in a 4 x 4 form. For element 1 defined by nodes 1-2,the dof are Q1, Q2, Q3 andQs and that
for element 2 defined by nodes 2-3, would be Q3, Q4, Qs andQs.

g

&

M‘DEPARTMENT OF MECHANICAL ENGINEERING



Element 1:The element stiffness matrix would be :

Nodel Node2

—P,  —N—\

1 2 3 4 <& Globaldof
1 0 -1 0 ]
0O 0 0 0 2
K!' = 10x108/-1 0 1 o 31U
0 0 0 0
| 2 3 4 < Global dof
10 0 -10 0 ]
0O 0 0 o0 2
= 103(-10 0 10 o 3 U
0O 0 0 0
Element 2: The element stiffness matrix would be :
S Node2 ~ Node3
3 4 5 6 < Global dof .
0.64 -048 -0.64 048 3
-048 036 048 -0.36 4

K2 = 8x103(-064 048 064 -048| 5 U

048 -036 -0.48 036 6

3 4 5 6 <« Globaldof
512 -3.84 -5.12 384 3
-048 288 38 -2.88| 4

= 10°|-5.12 38 512 -384| 5 U

384 -288 -—-3.84 288 6
The global stiffness matrix would be : .
1 2 3 4 5 6 < Global dof
10 @ -10 0 0 0 ] 1
0 O 0 0 0 0 2
-10 0 (10+5.12) (0-3.84) -5.12 3.84 3
K = 103 0 0 (0-384) (0+2.88) 3.84 -288 4 U
0 0 -5.12 3.84 512 -384| 5
L 0 0 3.84 -288 -384 283 | 6

o i)
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: 2. 3 4 5 6 <« Global dof
F%/ = 1
//// ‘ -
15.12 -3.84 :/:- 3
. 103 - 3 84 2 8 '.(’ /I‘ 4 U
77, 5
2,
/ / 3 : 1 /A 6
In this case, node 1 and node 3 are completely fixed and hence,
Qi=Q2=Q5=Qs=0
Hence, rows and columns 1,2,5 and 6 can be eliminated
Also the external nodal forces,
Fi=F,=F;=Fs=Fs=0
F4=-10x10°N
' R Global dof
[0 ]
0 2
0 3
3
The global force vector would be, F o= |710x107) 4
0 5
L L0 ]

In global form, after using the elimination approach

KQ = F

15.12 -3.84| (Q, 0
10 [—3.84 2.88 ] {04} 3 {—10)(103}
103(15.12Q3-3.84Q4) = 0
Q; = 0.254Q4
103 (- 3.84 Q3 + 2.88 Q4) =- 10 x 103
-3.84Q3+2.88Qs=-10
©3.84(0.254 Q) +2.88 Qs =-10
Q4 =-5.25mm
Q3 =-1.334mm

The reactions can be found by using the equation:
R=KQ-F

DEPARTMENT OF MECHANICAL ENGINEERING



R:| (10 0 -10 0 0 0 |
R, 00 0 0 0 0

R = 100/0 0 -512 384 512 -384
Ryl 0 0 384 -288 -384 288

Ri=-10x 10’ x (-1.334)=13340N
R,=0N

Rs=-5.12 x 103 x (-1.334) + 3.84 x 10°x (-5.25) = -13340 N
Re = 3.84 x 10° x (-1.334) — 2.88 x 10°x (-5.25) = 9997.44 N

E
To determine stresses:C = _E[—l

-m | m
[, ]q
Element 1:
s 0 3
200x10’ [0 f
<10’
= ——/ -1 0 1 -1.334
o1 2000 | o
| —5.25 |
= —66.7 N/mm?
Element 2:
-1.334
200x10° Ren
X
Gy = W[O.g -0.6 —0.8 0.6] 0
0
= 83.312 N/mm?

Example :Consider the four-bar truss shown in Fig. It is given that E =29.5 x 10°

psi andA. = lin.? for all elements. Complete the following:

(a) Determine the element stiffness matrix for each element.

(b) Assemble the structural stiffness matrix K for the entire truss

(c) Using the elimination approach, solve for the nodal displacement.

(d) Recover the stresses in each element.

(e) Calculate the reaction forces.

TEb %
% g 2.
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E =29.5 % 108 psi

30in A =1.0in?
20000 1b
Q3 = X
(@)
0 25 000
Y
4167 0
Forces: Ib
15833 } > 20 000
3126 21879
(b)
Fig

(@ It is recommended that a tabular form be used for representing nodal coordinate data
and element information. The nodal coordinate data are as follows:

Node X y
1 0 0
2 40 0
3 40 30
4 0 30

The element connectivity table is

A%
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Element 1 2
1 1 2
2 3 2
3 1 3
4 4 3

Note that the user has a choice in defining element connectivity. For example, the
connectivityof element 2 can be defined as 2-3 instead of 3-2 as in the previous table.
However,calculations of the direction cosines will be consistent with the adopted
connectivityscheme. Using formulas,together with the nodal coordinate data andthe given

element connectivity information, we obtain the direction cosines table:

Element

le

/

m
1 40 1 0
2 30 0 -1
3 50 0.8 0.6
4 40 1 0

For example, the direction cosines of elements 3 are obtained as
[ = (x3—x1)le=(40 - 0)/50=0.8 and m = (y3 —y1)le = (30 - 0)/50 = 0.6.

Now, the element stiffness matrices for element 1 can be written as

1 2 3 4 | Global dof
0 -1 0] 1
6
k1=_”%!9- 0 0 0 0 2
-1 0 10| 3
00 00) 4

The global dofs associated with element 1, which is connected between nodes 1 and2,are
indicated in k! earlier.These global dofs are shown in Fig. 1.32(a) and assistin assembling the
various element stiffness matrices.The element stiffness matrices of elements 2,3and 4 are as
follows:

% & 9 4
0 0 0 0] 5
6
l‘,=29.53>(; T, B Al
o 0 0 o 3
0 =<1 0 1|4
2 5 6
48 —64 —487 1
3 2955’; 100 36 —48 -36| 2
64 —-48 64 48| 5
—48 -36 48 36| 6
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7 8 5 6
1 0 -1 0

l‘4=29.54>(; 1] [
0 0

=1
0 0 0 O

(b) The structural stiffness matrix K is now assembled from the element stiffness
matrices.By adding the element stiffness contributions, noting the element
connectivity, we get

1 2 3

U1 00 N

5 6

—7.68 —5.76 0 2268 576 -1
=576 —4.32 0 —-20.0 5.76 24.32 0
0
0

(¥

0

4 7
(2268 576 —-150 0 =768 —=576 0 1
576 4.32 0 0 -576 —-432 0 2
-150 0 15.0 0 0 0 0 3

29.5 x 10°
K = 0% 1 0 0 0 20.0 0 -200 O 4
600

0 5
6
7

8
0
0
0
0
0
0
0

0 0 0 —-15.0 0 15.0
0 0 0 0 0 0 0] 8

L. g

(© The structural stiffness matrix K given above needs to be modified to account for the
boundary conditions. The elimination approach will be used here. The rows and
columns corresponding to dofs 1, 2, 4, 7, and 8, which correspond to fixed supports, are
deleted from the K matrix. The reduced finite element equations are given as

1S 0 0 Q 20 000
29.5 x 10° 4
600 0 2268 576 {Qs¢ = 0

0 576 2432 || Qs —=25 000

Solution of these equations yields the displacements

0 27.12 X 1073

Qs ¢ = 5.65 X 107 } in.

Qs -22.25 X 1073

The nodal displacement vector for the entire structure can therefore be written as
Q =[0, 0,27.12x 103, 0,5.65 x 107, -22.25 x 10,0, 0]" in.
(d The stress in each element can now be determined as shown below.

The connectivity of element 1 1s 1 - 2. Consequently, the
nodaldisplacementvectorforelementlisgivenby q = [0,0, 27.72 x 1073,0]"

0
29.5 x 10° 0
1= L1 01 0] 10

0
= 20 000.0 psi

LA
ST R
R
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The stress in member 2 is given by

5.65 X 1072
295 X 10° -2225 x 1073
o2= =35 10 1.0 -1}y 0 107
0
= —21 880.0 psi

Following similar steps, we get
{3 = 5208.0Psi
(4= 4L67.0Psi

© The final step is to determine the support reactions. We need to determine the reaction
forces along dofs 1, 2, 4, 7and 8, which correspond to fixed supports. These are obtained
by substituting for Q into the original finite element equation R = KQ - F. In this
substitution, only those rows of K corresponding to the support dofs are needed, and F
= 0 for those dofs. Thus, we have

e R
:fR‘ (2268 576 —150 0 —768 —-576 0 O] 0 :
1 ey e ‘ ‘ ' 27.12 X 107
TR | 9551l 576 432 0 0 -576 -432 0 0 g

X Ry} = T 0 o 0 200 0 =200 0 0|4 5.65 X 107

| R 0 0 0 0 -150 0 150 Off L 0 o
LR L 0 0o o0 0 0 0 0 0] "

Which results in

R)) [-158330)
R, 31260 |
{R, =1 218790 b
| & ~41670 |
(&) L 0 |

3ot
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UNIT 11
BEAMS

Derivation of Shape Function for Beam Element [Fourth Order Beam
Equation]

Consider the beam element as shown in Fig..  The beam is of length L with axial local
co-ordinate x and transverse local co-ordinate y. The local transverse nodal displacements are -
given by d,, and d, .. The rotations are given by ¢, and ¢,. The local nodal forces are given’
by F,, and F, . The bending moments are given by m, and m,. /

y.vi
®1, my
r
- 5 ) M2.02
14 x :
L ~
Fiy. dw F2y. di’y
Fig. ... Beam element with positive nodal displacements, rotations, forces, and moments

At all nodes, the following sign conversions are used. .
(1) Moments are positive in the counterclockwise direction.
(if) Rotations are positive in the counterclockwise direction.
(#ii) Forces are positive in the positive y direction.
(iv) Displacements are positive in the positive y direction.

Fig.. indicates the sign conventions used in simple beam theory for positive shear
forces F and bending moments m.

MC /Dm

F B

~

Fig.. . Beam theory sign conventions for shear forces and bending moments
Assume the transverse displacement variation through the element length to be
v(x) = a;x3+ayx?+ayx+a,

We express v in terms of the nodal degrees of freedom d s dzy, ¢, and ¢, as follows:

Atx =0,

v(0) = a,=d,,
dv
_dill = 30]x2+202x+a3
v
& T et

When x =L,
V(L) = al L3+02L2+a3L+a‘ =d2y
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dv
—a%l 3a|L2+2azL+as=¢z

where ¢ = %

Finding @, and a, in terms of d\,, d,, ¢, and ¢, by using the above equations ~ ...,

o= dy, = aylP+ayLl2+a3L+a,

= aLP+a?+a;L+d), [vag=d),]
= (dy,—d,,) = a\LP+a, L2+, L
> (dy-dy, -4 L) = a,L3+a,L2
= *ll:(dzy—d,y—¢, L) = a,L2+a,L o

= ¢, = 3a,12+2a,L+a,

= 3a,L2+2a,L+¢, [ ay=¢,]
= -4, = 3a,L2+2a,L
Equation ¢

3
= 1 (dy-d,~-¢L) = 3a,L243a)L

Solving equation

¢2_¢|

3
E (dzy—dl).—¢| L) = 3a|L2+302L

3a,12+2a,L

Subtracting, by— ¢, —% (dy, —dyy L) = -a,L

d1-bi-2 dyy—di )+ BL = -a;L

b2-bi=3 (dyy=dy)) +3 8 = —a,L

02428, = 2 (dyy-dyy) = oL

'Il: (92 +2¢) - 13‘2 (dy, —dy)) = —a,
= 0240 + 13 gy ) = @

@
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-1 3
= T(’2+2¢l)—§(d1y-d2y) = a

-3 1
= a = ﬁ(dly-dZy)-E(2¢[+¢2)

Substitute @, value in equation *

= $; = 3a,L2+2L Lz(d., dz,)—L(2¢.+¢z)]+as

I
w
B
‘13

- L @y -ds) 226, + )+, [ ay=¢,]
= $;—¢ = 3a,L2 - %(d.,—dzy) 4¢.-2¢,

= 3¢, +3¢, = 3alL2—%

= 3a,L2 = 3¢.+3¢,+;(d,,—dz,)

2
a;L? = ¢, tot (d),-d,))

i 2
= a, = §(¢l+¢2)+i'3'(d|,—d2y)
i 2 | : _—
= a, = E}‘(dly-dZy)+§ (b;*“z) .
Substitute a,. a,, a; and a, values in equation = . ™

2 1
v(x) = [5 (dly'dzy)*",:z’ (%) + ¢2) :Ix3 +

-3 1
['fi' (dyy—dyy) = L 26+ ]x2+¢|x+d|y

[~ ay=d; a;=d),]

In matrix form, v(x) = [N] {d}
dy,
= vix) = [N} N; Ny Ny ;;y
)
= v(x) = Npd, +Ny ¢, +Nydp, + N §,

where Ny, Ny, N; and N, are shape functions for beam element.

. Stiffness Matrix [ K ] for Beam Element

The stiffness matrix for the beam element is derived by using a direct equilibrium
approach and beam theory sign conversions.

We know that,

Transverse displacement
2 ]
W) = [ ) + i+ |
-3 ]
+ [F (dy,—dy,) - L2 +¢2)] x2 4 §yx + d,
- dvm 2 1
= - 332[L—3(d1y‘d2y)+§(¢|+¢2)

dx

+2x [:L% (d,-dy,) - i]: 2+ ] + ¢
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-3 ]
* 2[-[7 (dy—dyy) -7 2 +¢’z)]

d*v(x) 2 ]
dx; - 6[E_{ (d,,.-dzy)+ iz (4, +4,) ]

Put x =0 in equation ({

d*v(0) -3 I
=0+ 2T -ty L 0o ]

-6 2
fz' (dly-d2y) =Y 24+,

I

c

dv(©) _ 1
a2 fﬁ[‘GLdly“‘Lz"l+5Ld2y‘2’~2¢2]

Put x =L in equation

d*v(L 2 1
= ‘d—:‘(z—l = GL[L_; (d|y"d2y)+'|_—z(¢1+¢z)]

- 1
‘ 2[3% @, ~dy) - 1 @ ¢.+¢2)]

12L 6L 6 2
BEl (d\y-dy) + 17 td) - 12 (@), ~dy) -1 2¢;+4¢))

i'g [12Ld,, - 12Ld,, + 6126, +6L2p,~ 6Ld,,
+6Ldy, 412 ¢, -212¢,]

2‘ )
dd‘.’\':-‘ = $[6Ld|y+2Lz¢|—6Ld2y+4L2¢2] —

Put x =0 in equation |

div(0 2
_d";%l = 5[?}' (dly‘dzy)*il'z('#l*%)]

= [—fg [12d),~12dy,+ 6 L&)+ 6 L §,]

(0 1 :
LoD - L1124, +6L4y 124y, +6 L) ¢ w3

Put x =L in equation '
d*v(L) 2 |
= v = 6[i—3‘ (dly—dzy)+§(¢|+¢2):|

dx3

1
= 13 [12d), — 124y, + 6L¢, + 6L ¢)]

Bvl) 1 g
-;"f,—l = 73 [12d,, + 6L4, - 12dy, + 6L )]
We know that,
- gy 2vO0)
Nodal force, F;), = EI =53
El
- Fiy = (3 [12d,, + 6L¢, — 1245, + 6L4;]

— . \

@
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Bending moment, m,

m

Nodal force, F,,

Fa,

Bending moment, m,

m 2

- _E d*v(0)

dv?

~El
L—E' [-6Ld,, - 412¢, + 6Ld,, - 212 ¢,

-5—; [6Ld), +412¢, - 6Ld,, + 212¢,]

dJV!L!

—El PR

"L—';:l (12d,, +6L ¢~ 124y, + 6 L ¢,]

El _
0 [-12d), - 6L§+12d,, - 6L ;)

d*v(L)

B

El
D [6Ld,, +212¢; - 6Ldy,+ 412¢,)

L- L, vl e ©

Arranging to the above equation (F, y >, Fyy, my) in matrix form,

F,y
m

Fzy
my

This is a finite element equation for a beam element.

Stiffness matrix, [K ]

where E

@
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12 6L =12 6L dy,
EL 6L 412 -6L 212 [ ;
| -12 6L 12 -6L dzyj"
6L 212 -6L 412 )
12 6L -12 6L
El 6L 412 -6L 212
L] 12 -6L 12 -6L
6L 212 -6L 412
Young’s modulus
Moment of inertia
Length of the beam



For the beam and loading shown in fig. calculate the nodal displacements.
Take [E] =210 GPa =210x10° N/m2 , [I] = 6x10° m* NOV / DEC 2013

6 KN 12 KN/m

R
RS

NN\

A

|

1m

Zm o

Given data

Young’s modulus [E] =210 GPa =210x10° N/m?
Moment of inertia [I] = 6x10¢ m*
Length [L]1 = Im
Length [L]> = 1m
W=12 kN/m =12x10°> N/m
F =6KN
To find
» Deflection
Formula used

T1 12 6 -12 6l o
-12] 1 6l 412 2
o 2 M= m 6l 201 6

I 1 [,
21 M P -12 -6 12 —6211 U

21 6l 2 -6l 41 6 KN
_12 \ M,e
Ml,el 1 4
Solution ‘) \ ‘
1 2
For element 1
v1,Fi v2,F2
_l 1
= F 12 6 -12 6L
1 1
—121 1 6l 412 2
fix) ' I+[Ml]= EL -6l 211 61

[
fo o1z e, 12 -gh %)

el 6/ 2 -6l 4l

Applying boundary conditions
sy Fi1=ON ; F,=-6KN=-6x10° N; f(x)=0

é‘“‘QS
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M =M>2=0; u;=0; 01=0; w#£0; 0,70

12 6 -12 6} u1

10%x [ 8 1= 210x10°x6x10°6 6 4 -6 21 6
—6 3 12 -6 lu,l

0 -12 -6 I 95

6 2 -6 4

oJLn
52 Ko
| g e
M‘DEPARTMENT OF MECHANICAL ENGINEERING



12 6 —12 6 0

_ 6 6 4 —6 2 0
L26x10° 5 o 10 g1 {3

6 2 -6 4 0 Mads 2KN m MO

For element 2

-1
- F 1 uz w
F2l p 112 6 -12 6k o, 2F2 vs.F3
a2 Mo Bl 6l 412 _g] lel [u3]
o 1t lp 1= " I- I o,
o L12 -6l 12 -6
2

[ 2l M, 6l 212 -6l 42
L1z onditions

Applying boundary ¢

PPYIE DoAY 5x10° Ny Fa=Fs=0-Ma=M.

fix)=-12 kN /=1

w#0; 0:#0; u3=03=0

10"+ Bo126x1004) % 4 ZH § B

6 0 12 6 12 -6l Lol

1 0 6 4 -6 4 0
—6 12 6 —12 6 u

10°x{"11=126x10°%] 6 4 -6 2 62
—6 12 6 12 -6l Lo}
1 6 4 -6 4 0

Assembling global matrix
0 . 12 6 —12 -6 0 0 0

0 I6 4 -6 2 0 0

103x —12 =126x106xI"12 —6 24

-1 I 6 2 0 8 -6 21 by
—6 I 0 0 —-12 -6 12 -6 O
1] Lo o 6 2 -6 4 0]
Solving matrix
-12x10%=1.26%10°%24u,=0; u=-3.96x10"*m
-1x10°=1.26x10°%80,=0; 0,=-9.92rad

Result
0,=-9.92rad
w=-3.96x10"*m

% g

e _’\g-:
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UNIT II
Tutorial Questions

1. For the two bar truss shown in figure, determine the displacement at node 1 and stresses in element2,
Take E=70GPa, A= 200mm?Z.

1 N A

2. For the beam loaded as shown in figure, determine the slope at the simple supports. Take E=200GPa,
1=4x105m*.

24EM/m

%Lllll .,
Sm j 5m ’[’

3. For a beam and loading shown in fig., determine the slopes at 2 and 3 and the vertical deflection at the
midpoint of the distributed load.

PN

&

.;K.\'.'m
SRRRRRRN

11 AT 7\.3
Z m ras

I'_ Im | Im i

Fig.5

-Determine the stiffness marrix. stresses and reactions in the truss structure shown:

-1n figure

E=200GPa

£&=1000mm* ST
P -
! h 4
« 9 /’ ”

$00mm 7 gt

. } P

| B 750rem
= o

S

2 Ko
g;”"a i
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UNIT II
Assignment Questions

1. Derive the stiffness matrix for Truss element
2. Derive the stiffness matrix for Beam element

3.

Calculate the nodal displacement, stresses and support reactions for the truss
shown in Figurc.

800 1rm|
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UNIT 3

TWO DIMENSIONL PROBLEMS
&
AXI-SYMMETRIC MODELS

-«



Syllabus

Two Dimensional Problems: Basic concepts of plane stress and plane strain, stiffness
matrix of CST element, finite element solution of plane stress problems. Axi-Symmetric
Model: Finite element modelling of axi-symmetric solids subjected to axi- symmetric
loading with triangular elements.

OBJECTIVE:

To learn the applications of FEM equations in 2D Plane problems with CST elements.

OUTCOME:

Formulate FE characteristic equations for axisymmetric problems and analyze plain
stress, plain strain and Derive element matrices for CST elements.

g;“g C
—AS.‘
3%&::::: DEPARTMENT OF MECHANICAL ENGINEERING



UNIT —I11

TWO DIMENSIONAL PROBLEMS

A thin plate of thickness ¢, with a hole in the
middle, is subjected to a uniform traction
load, 7"as shown. This 3-D plate can be
analyzed as a two-dimensional problem.

2-D problems generally fall into two
categories: plane stress and plane strain.

a) Plane Stress

Ay

o

A plane stress problem

The thin plate can be analyzed as a plane stress problem, where the normal and
shear stresses perpendicular to the x-y plane are assumed to be zero, i.e.

0-: =0’ T.\:: =O’ T}: =O

The nonzero stress components are

o,#20; 0, %0, 7, #0

b) Plane Strain

A dam subjected to uniform pressure
and a pipe under a uniform internal
pressure can be analyzed in two-
dimension as plain strain problems.

The strain components perpendicular to

Ad
the x-y plane are assumed to be zero, = / o

l.e.
&= 9=0 7, =0

Thus, the nonzero strain components
are &, £,,and y,

£ #0; 6, #0; v, #0

> X

bjected to a uniform
pressure

Pipe under a uniform

internal pressure



8-2 General Loading Condition

A two-dimensional body can be subjected to three types of forces:

a) Concentrated forces, P, & P, ata point, i;

b) Body forces, £, , & 1, acting at its centroid,;

c) Traction force, 7 (i.e. force per unit length), acting along a perimeter

t = thickness at (x, y)

e+ f, = body force components

. [ per unit volume at (x, y)

The 2-dimensional body experiences a
deformation due to the applied loads.

At any point in the body, there are two
components of displacement, i.e.
u = displacement in x-direction;

v = displacement in y-direction.
L

x

t = thickness at (x, y)

f.. f, = body force components
— per unit volume at (x, y)




Stress-Strain Relation

Recall, at any point in the body, there are three components of strains,
I.e.

ou
fg_‘ ox

el =45 y=4 o >
7' oy

WA ou oOv

._.+..__

Oy Ox|

The corresponding stress components at that point are

=1

The stresses and strains are related through,

o} =[DPlis}

where [D)] is called the material matrrix, given by

1 » @
[D] = & =-qv 1 0
1=v" 1o 0 1
for plane stress problems and
- 1—v v 0
[D] — - l—v 0
(1+v)(1—2v) o Ly

for plane strain problems.



8-3 Finite Element Modeling

The two-dimensional body is
transformed into finite element model
by subdividing it using triangular
elements.

Note:

1. Unfilled region exists for curved
boundaries, affecting accuracy of the
solution. The accuracy can be
improved by using smaller elements.

2. There are two displacement

components at a node. Thus, ata 1 V
node j, the displacements are:
Q,,, nx-direction

Q,, ny-direction

Difference B/W CST & LST elements
CST LST

* CST - Constant Strain Triangle o 1.9T - Linear Strain Triangle
* 3 nodes per Triangle * 6 nodesin Triangle

° e e N 5 o ] .
First order Triangle Element * Second order Triangle Element

¢ Stain intthe clementwonEvary., & Sheln willvapvin the clement as
Through out the element surface
constant strain is observed.

Linear

* Displacement function is quadratic

* Displacement function is Linear - .
1 * The variation of the displacements

* Hence the displacement model is WS H I W -

(U, ) = @ + X + oy expressed as:

V(X y ) =By + Box + By U(X,y) =8 +a,X+ay +a,x* +asxy+agy’
% vix.v)-a. +a,.x+a..vt+a...x2 +a.XV + 3.V

yv

oy AN
—_—y [~< Eckit with WF
(xy. v,) ! ‘.'.x\.::!




* CST elements are poor in

_ . . : ¢ LST elements are good in
Capturing the bending behaviour 5

Capturing the bending
* For same number of elements, behaviour
true displacement and stresses not

. . For same number of elements.
obtained in CST elements

true displacement and stresses

. 1 . - a1 att . . .
Fig below shows the variation of obtained better in LST elements

shape function N1 for the CST

Fig below shows the variation of
element

shape function N1 for the LST

]nb“ PR

Shape Function N, for CST Shape Function Ny for 15T

Example 5.1

Evaluate the shape functions N,, M., and N; at 1he interior point P for the triangular ele-
ment shown in Fig. E5.1. ,

¥
1 3{4,7)

2 (7.3.5)

1(1.5.2)

FIGURE E5.1 Examples 5.1 and 5.2,

Solution Using the isoparametric representation {Eqgs. 5.15), we have
3.85 = 15N, + TN, + 4N, = —2.5£ + 39 + 4
48 = 2N, + 35N, + TNy = —56 ~ 350 + 7

These two equations are rearranged in the form




2.5¢ - 3 = 0.15
56+ 359=22
Solving the equations, we obtain ¢ = 0.3 and 7 = 02, which implies that

N=03 N=02 N=05 .

In evaluating the strains, partial derivatives of 1 and are to be taken with respect
tox and y. From Eqs. 5.12 and 5.15, we see that %, vand x, y are functions of £ and ». That

:?s;;{tigl S.{;{nit?jc: Efi:}v]r: ?:::Lwaﬂy v = 2¥(&m), (¢, 9)). Using the chain rule for
du _ dUdx gudy
d¢ - &xE.E_ ¥ QE
U _ dudx Judy
h_ﬂa+$£
which can be written in matrix notation as

f 3

ou | [ax ay7(au)
N | o |]ox
ou dx dy {au
) Lom o {5y
where the (2 X 2) square matrix is denoted as the Jacobian of the transformation, J:

e,
T
I

r (5.16)

ox 3y
_| e B
J ax ay 17
an o
Some additional properties of the Jacobian are given in the appendix. On taking the
derivative of x and y,
J = [xlz J’ls] (5.18)
X2z Y3
Also, from Eq. 5.16,
ou au
ox | _ ) 93¢
au J ou (5.19)
ay o
where J~! is the inverse of the Jacobian J, given by
- 1 Yz3 ‘}'13]
1
! det.l[-xu Xy3 (5-20)

detd = xj3%3 — X23M3 (5.21)




Example 5.2
Determine the Jacobian of the transformation J for the triangular element shown in Fig. ES.1.

Solution We have
J= X3 Wi — -25 =50
X113 Ya3 30 -35
Thus, det J = 23.75 units This is twice the area of the triangle. If 1,2, 3 are in a clockwise

order, then det J will be negative. -

From Eqs. 5.19 and 5.20, it follows that

o » ou " du

— 3Tr — Na—

ox{ _ 1 o an (5.23a)
du detJ x due +x du
— —=X337 . 135

oy ? at an |

Replacing « by the displacement v, we get a similar expression

dv v, Jv i av

i A — Wya—

ax | _ 1 & a7} (5.23b)
dv det¥ | _ .3% ¢ ..2%

ay 233 135,

Using the strain—displacement relations (5.5) and Egs. 5.12b and 5.23, we get

- I

au
ax
- dov >
dy
du o
h ay dx r
1 y2a(q — gs) — nalgy — gs)
= deid —x23(q2 — gs) + x13(qs — gg) (5.24a)
—xza{qy — gs) + xa(g; — gs)y + Yealg — 9e) — ¥13(Gs — Gs)
From the definition of x;; and y;;, we can write ¥31 = —yizand ¥ = Wi — Wi,

and so on. The foregoing equation can be written in the form

1 Yosth + Yaigs + yiogs
€ = JetJ ) F3292 T X3y + X296 (5.24b)
Y3z F Yasqr + Xisga + Qs + X215 + V09

This equation can be written in matrix form as

€ = Bq (5.25)

\.\:rhere Bis a (3 X 6) element strain—displacement maitrix relating the three strains to the
six nodal displacements and is given by

1 [3 0 yu O y, o0
derg| O ®2 0 x5 0 xy, (5.26)
X3o Yas Xia Vi, Xay Yia

It may be noted that all the elements of the B i
. matrix are i rms
of the nodal coordinates. constants expressed in e

Example 5.3

Find the strain—nodal displacement matri
. rices B* for . {
numbers given at the corners, the elements shown in Fig. E5.3. Use foca




- Jin.
FIGURE ES.3

Solution We have
1 [hs 0 w 0 0}
Bl=——| 0 x, 0 x;3 0 x5
f32 ¥ i3 Y Xu Mz
[ 2 0 0 0 -2 o}
6 -3 ¢ 3 0 0
-3 2 3 0 0 -2

where det J is obtained from x;330; — X303 = (3)(2) — (3)(0) = 6. Using the local num-
bers at the corners, B? can be written using the relationship as

-2 0 0 0 2 0
B=- 0 3 0-3 0 0 a

o=

3 -2 -3 0 0 2

Potential-Energy Approach
The potential enerﬁy of the system, I1, is given by
I =%_/5TDetdA - fuT&dA - /uTTtdf-— Eufl', - (527
A A L i

In the last term in Eq. 5.27, i indicates the point of application of a point load P; and
P=[P, P,,];r. The summation in i gives the potential energy due to all point loads.

Using the triangulation shown in Fig. 5.2, the total potential energy can be written
in the form

M= ;%[:TDetdA - 2 _[qurdA - /LuTT:df— ‘Eu,-TP,- (5.28a)

or
n=30,-3 /uTh‘dA - EfLuTwe- SuP,  (528b)

where U, = 3 [ €"Det dA is the element strain energy.




THE FOUR-NODE QUADRILATERAL

Consider the general quadrilateral element shown in Fig, 7.1. The local nodes are numbered
as 1,2,3, and 4 in a counterclockwise fashion as shown, and {x;, y,} are the coordinates of
node i. The vectorq = [q,,4,...,¢s]" denotes the element displacement vector. The dis-
placement of an interior point Plocated at { x, y) isrepresented asn = [(x. y) v(x. ¥ )

Shape Functions

Following the steps in earlier chapters, we first develop the shape functions on a maste?
element, shown in Fig. 7.2. The master element is defined in £-,m-coordinates (or natural
coordinates) and is square shaped. The Lagrange shape functions where i = 1, 2,3.and
4,are defined such that N is equal to unity at node # and is zero at other nodes. In par-
ticular, consider the definition of N;:

N =1 atnodel

=0 atnodes2,3 and4 (7.1)
‘ 96

FIGURE 7.1 Four-node quadrilateral element.

-
-
[
L
e -]

{1.1)
3

P(f.-ﬂ)

y

o, o |

1 -2
(-1, -1} (1, -1

FIGURE 7.2 The guadrilateral element in £, 5 space (the masrer alement).

Now, the requirement that &, = 0 at nodes 2, 3, and 4 is equivalent to requiring that
N, = 0 along edges & = +1 and n = +1 (Fig. 7.2). Thus, &; has to be of the form

M=c(l—£&(L—m) (7.2)
where ¢ is some constant. The constant is determined from the condition &V, = 1 at
node 1. Since §{ = —1, 1 = —1 at node 1, we have

1 = c(2)(2) (7-3)

which yields ¢ = 1. Thus,
Ny = 3(L — £)¥1 - ) (7.4)




All the four shape functions can be written as
M =31-801-n
Ny =3(1+€(1-n) (7.5)
Ny =31+ (1 +n)
No=5(1 -6 +n)

While implementing in a computer program, the compact representation of Eqgs. 7.5 18
useful

N =31+ &)1 +mm) (7.6)

where (£;,n;) are the coordinates of node .

We now express the displacement field within the element in terms of the nodal
values, Thus, if w = [u, v]" represents the displacement components of a point located
at {¢,7), and q, dimension (8 X 1), is the element displacement vector, then

u = Ng, + Nog; + Nsgs + Nyg;

v = Ny + Nogy + Nagg + Nygg (7.7a)
which can be written in matrix form as
u = Ng (7.7b)
where
M ON ON 0N 0
N = 4 7.8
|:0N1 0 AN 0N3UN4:l (78)

In the isoparametric formulation, we use the same shape functions N, to also ex-
press the coordinates of a point within the element in terms of nodal coordinates. Thus,

X = N]xl + Nzxz + N3X3 + N4x4
y =Ny + Noys + Nyys + Ny (79)

Su'bsequently, we will need to express the derivatives of a function in X-,
y-coordinates in terms of its derivatives in -, n-coordinates. This is done as follows: A
function f = f(x, y), in view of Eqs. 7.9, can be considered o be an implicit function of
£ andyas f = flx(£,n), y(£ 1)] Using the chain rule of differentiation, we have

of _ofax ofay
0§ dx 9f dyat
of _ofax  afay

10
dnp  dxdy  Jy Iy (710
or
df of
e | _ ) ox
of { = A f (7.11)

on ay




where J is the Jacobian matrix

)

_| % o
J= i 0y (1.12)

an o
In view of Eqs. 7.5 and 7.9, we have

_ 1[—(1-n)x1+(1-n)Xz+(1+n)xr(1+n)x4 ‘(1‘*1))’1"‘(1_’!}')}*2"‘(1"‘7?))’3‘(1+T?]J’4]

4 (=80~ (TE)mpt (L)t (1=€)x, |~ (1=Ep~(1+E)yt (148 ys+ (1-6)y,
(7.13a)
E':Jll Jl?.:‘
J21 j22
(7.13b)
Equation 7.11 can be inverted as
2 of
ax | ) o
of =J of (7.14a)
gy an
or
8f of
ax _L by =dp|) 0
if _detJ|:—.r’2| J,l} af (7.14)
dy on

These expressions will be used in the derivation of the element stiffness matrix.
An additonal result that will be needed is the relation

dxdy = detJ d¢ dn (7.15)

The proof of this result, found in many textbooks on calculus, is given in the appendix.

Efement Stiffness Matrix

The stiffness matrix for the quadrilateral element can be derived from the strain energy
in the body, given by

U= / joledV (7.16)
Vv

or
U=, f aTedA (7.17)
¢ [

where ¢, is the thickness of element e.




The strain-displacement relations are

Q_r{
¢ dx
E” ‘ 3w }
€= i = —
ay
Yoy du v
- + -
\ ay 0x 7
By considering f = u in Eq. 7.14b, we have
rg&\ (?_u}
) ax , — 1 jn _JIZ 6‘§ \
E{" detJ _JZI Jll 1 a_u
©a L én )
Similarly,
fa_v\ ra_l{\
) dx - 1 Jz;)_ _'JIZ ) &é P
a_'v det-' "'J(zl J“ B_v
\ayl gan y
Equations 7.18 and 7.19a,b yield
R
?E
o€
du
on
€=A
You (
9¢
v
\ 97

where A is given by
1 b —~Jiz 0 0
A = a_c_ij O 0 "'jz] jll
=~ I 52 —Ji2
Now, from the interpolation equations Eqs. 7.7a, we have

o
du

%
du
o
dv
o
fi_y
Ty

(1.18)

(7.192)

(7.19b)

(7.20)

(7.21)

(1.22)




where

“(1-m) 0 (1-m) 0 (l+g) 0 ~(1+m) O

11-0-84 0 —(+§ 0 1+ 0 (1-§ 0
49 0 -(1-m 0 (1-7) 0 (d+%) 0 —(1+n)
0 -(1-¢ 0 -(1+& 0 (1+& 0 (1-§)

G=

(7.23)
Equations 7.20 and 7.22 now yield
¢ =By : (7.24)
where |
B=AG (7.25)

The relation € = By is the desired result. The strain in the element is expressed in terms
of its nodal displacement, The stress is now given by

o =DBq (7.26)

where Dis a (3 X 3) material matrix. The strain energy in Eq. 7.17 becomes
1ol
U= E%qT[te / [ B'DB detJ d¢ dn]q (127)
¢ -1 v-1
= 2iqkyq (7.270)

where

1 pl
K=t f / B™DB detJ 4% dn (1.28)
=t J~1

is the element stiffness matrix of dimension (8 X 8}.
We note here that quantities B and det J in the integral in Eq. (7.28) are involved
funetions of £ and #, and so the integration has to be performed numerically. Methods

of numerical integration are discussed subsequently.

Element Force Vectors

Body Force A body force that is distributed force per unit volume, contributes
to the global load vector F. This contribution can be determined by considering the body

force term in the potential-energy expression

/ "idv 029
v

Using m = N, and treating the body force { = [f,, £,]" as constant within each ele-
ment, we get




~nJSLa
SR SR

a v‘,‘?‘:‘(;’

Kozt

VR

Axi-Symmetric Models

Elasticity Equations
Elasticity equations are used for solving structural mechanics problems. These
equations must be satisfied if an exact solution to a structural mechanics problem

is to be obtained. The types of elasticity equations are

1. Strian — Displacement relationship equations

Ou
e = ;

e _Ov du ov ou ow
Y Y N

9

*ox Y oy Y Oy o ¢ 8z ox

ov ow
=—+

sz—g 5

ex— Strainin X direction, ey— Strainin Y direction.

Y x - Shear Strain in XY plane, y .. - Shear Strain in XZ plane,

Y yz - Shear Strain in YZ plane

2. Sterss — Strain relationship equation

((1—‘/) v v

o] oy (I-v) v 0
|
’cy\ ‘ v v o (1-v) 0 0 0 |l e
|
ER E | 0 0 4 1-2v o el
L T i) _ !
v 1-2v ||||y“y
i 0 0 0 = v
L’szJ | 0 0 0 0 0 1—2V|L'szJ
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o — Stress, T — Shear Stress, E — Young’s Modulus, v — Poisson’s Ratio,
e — Strain, y - Shear Strain.

3. Equilibrium equations

06, Oty +8sz N . y v o +By:0
ox Oy Oz oy 0z ox

o Or. Ol
~ + + B =0
Oz Ox 0y + -

o — Stress, T — Shear Stress, B,_- Body force at X direction,

B, - Body force at Y direction, B, - Body force at Z direction.

4. Compatibility equations

There are six independent compatibility equations, one of which is
2
0’¢ 9% 0%
x4 Xy
y
oy x?  OxOy-

The other five equations are similarly second order relations.
» Axisymmetric Elements
Most of the three-dimensional problems are symmetry about an axis of rotation.

Those types of problems are solved by a special two-dimensional element

o dLn

Sb =2

c o Y
el

o5 g S
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calledas axisymmetric element.
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» Axisymmetric Formulation

The displacement vector u is given by (u 1

ur2) ="

The stress o is given by

Stress,{c}z{ge -
GZ

\ 7z )

The strain e is given by

Strain,{ e}:g e’

\’YI’Z)

» Equation of shape function for Axisymmetric element

Shape function,

N oy +Pirtyz N _a, +B,r+y,z N =Ot3 +B3V+Y3Z
1 24 > 2 24 >3 24

o] = 1273 — 13272, 0 =13Z1 — INZ3; o3 = 1122 —127]

by = z5-73; By = z3-71; b3 =z1-22

Y1 =13-12; Y2 = 11-13; Y3 = 12-T1

2A = (1223 — 1322)-11(1321 — 1123)+21(1122 — 1221)

m:DEPARTMENT OF MECHANICAL ENGINEERING



> Equation of Strain — Displacement Matrix [B] for Axisymmetric element

[ B 0 B> 0 B3 oT[M]

w
| Yz o Y z o Y z || '

[ 117 B 0 rapes 0 rep g Ol
:ZA r 0 r " r 0 r . r 0 r /s ﬁw2T
Ly B Y B y Bl

L 1 1 2 2 3 3J| |

_rl+r2+713
3

r

> Equation of Stress — Strain Matrix [D] for Axisymmetric element

[1-v v % 0 |

E || \ 1—v V 0 ‘
Dl=t)=m) v v 1-v o
0 0 0 1-2v |

|L 2|J

» Equation of Stiffness Matrix [K] for Axisymmetric element

|k ]=211r4[B] |D] 5]

rl+r2 +r3
r= . A = (%) bxh
3

> Temperature Effects

The thermal force vector is given by

V) =211rA[B] e}

pn
STEh 2

ol T tlS
el
o5 ?;s
% DEPARTMENT OF MECHANICAL ENGINEERING
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» Problem (I set)

1. For the given element, determine the stiffness matrix. Take E=200GPa and

v=0.25.

1 2 r
0,0 (50,0)

2. For the figure, determine the element stresses. Take E=2.1x10°N/mm? and
v=0.25. The co — ordinates are in mm. The nodal displacements are u;=0.05mm,

w1=0.03mm, ux=0.02mm, w>=0.02mm, uz=0.0mm, w3=0.0mm.

z

(30,500

(0,0) (60,0) r
3. A long hollow cylinder of inside diameter 100mm and outside diameter
140mm is subjected to an internal pressure of 4N/mm?2. By using two

elements on the 15mm length, calculate the displacements at the inner radius.

DEPARTMENT OF MECHANICAL ENGINEERING



UNIT Il
Tutorial Questions

1. Derive the shape functions for CST Element
2. Derive the strain displacement matrix for CST element.
3. For the plane stress element shown in figure the nodal displacements are U1= 2.0mm, V1=1.0mm

U2=1.0 mm,V2= 1.5mm, U3=2.5mm,V3=0.5mm, Take E=210GPa, v=0.25, t=10mm. Determine the
strain-Displacement matrix [B]

N 200.400

" 400.100
100,100

fd g
gy
h:DEPARTMENT OF MECHANICAL ENGINEERING



Assignment Questions
1. For axisymmetric element shown in figure, determine the strain-displacement matrix.

Let E = 2.1x105N/mm?2 and v= 0.25. The co-ordinates shown in figure are in millimeters.

& 7

E {00, 5

LX)

o, 50

a) Write the difference between CST and LST elements
b) For point P located mnside the triangle shown m the figure below the shape functions
N1 and N2 are 0.15 and 0.25, respectively. Determine the x and y coordinates of point

P.
309

2(02)

(LD

3. Derive the shape functions for axisymmetric element

% g :E-
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UNIT 4

ISO-PARAMETRIC FORMULATION
&
HEAT TRANSFER PROBLEMS

-«



Syllabus

Iso-Parametric Formulation: Concepts, sub parametric, super parametric elements, 2
dimensional 4 nodded iso-parametric elements, and numerical integration. Heat
Transfer Problems: One dimensional steady state analysis composite wall. One
dimensional fin analysis and two-dimensional analysis of thin plate.

OBJECTIVE:

To learn the application of FEM equations for Iso-Parametric and heat transfer problems

OUTCOME:

Formulate FE Characteristic equations for Isoparamteric problems and
heattransfer problem.



UNIT —I11

TWO DIMENSIONAL PROBLEMS

A thin plate of thickness ¢, with a hole in the
middle, is subjected to a uniform traction
load, 7"as shown. This 3-D plate can be
analyzed as a two-dimensional problem.

2-D problems generally fall into two
categories: plane stress and plane strain.

a) Plane Stress

Ay

o

A plane stress problem

The thin plate can be analyzed as a plane stress problem, where the normal and
shear stresses perpendicular to the x-y plane are assumed to be zero, i.e.

0-: =0’ T.\:: =O’ T}: =O

The nonzero stress components are

o,#20; 0, %0, 7, #0

b) Plane Strain

A dam subjected to uniform pressure
and a pipe under a uniform internal
pressure can be analyzed in two-
dimension as plain strain problems.

The strain components perpendicular to

Ad
the x-y plane are assumed to be zero, = / o

l.e.
&= 9=0 7, =0

Thus, the nonzero strain components
are &, £,,and y,

£ #0; 6, #0; v, #0

> X

bjected to a uniform
pressure

Pipe under a uniform

internal pressure



8-2 General Loading Condition

A two-dimensional body can be subjected to three types of forces:

a) Concentrated forces, P, & P, ata point, i;

b) Body forces, £, , & 1, acting at its centroid,;

c) Traction force, 7 (i.e. force per unit length), acting along a perimeter

t = thickness at (x, y)

e+ f, = body force components

. [ per unit volume at (x, y)

The 2-dimensional body experiences a
deformation due to the applied loads.

At any point in the body, there are two
components of displacement, i.e.
u = displacement in x-direction;

v = displacement in y-direction.
L

x

t = thickness at (x, y)

f.. f, = body force components
— per unit volume at (x, y)




Stress-Strain Relation

Recall, at any point in the body, there are three components of strains,
I.e.

ou
fg_‘ ox

el =45 y=4 o >
7' oy

WA ou oOv

._.+..__

Oy Ox|

The corresponding stress components at that point are

=1

The stresses and strains are related through,

o} =[DPlis}

where [D)] is called the material matrrix, given by

1 » @
[D] = & =-qv 1 0
1=v" 1o 0 1
for plane stress problems and
- 1—v v 0
[D] — - l—v 0
(1+v)(1—2v) o Ly

for plane strain problems.



8-3 Finite Element Modeling

The two-dimensional body is
transformed into finite element model
by subdividing it using triangular
elements.

Note:

1. Unfilled region exists for curved
boundaries, affecting accuracy of the
solution. The accuracy can be
improved by using smaller elements.

2. There are two displacement

components at a node. Thus, ata 1 V
node j, the displacements are:
Q,,, nx-direction

Q,, ny-direction

Difference B/W CST & LST elements
CST LST

* CST - Constant Strain Triangle o 1.9T - Linear Strain Triangle
* 3 nodes per Triangle * 6 nodesin Triangle

° e e N 5 o ] .
First order Triangle Element * Second order Triangle Element

¢ Stain intthe clementwonEvary., & Sheln willvapvin the clement as
Through out the element surface
constant strain is observed.

Linear

* Displacement function is quadratic

* Displacement function is Linear - .
1 * The variation of the displacements

* Hence the displacement model is WS H I W -

(U, ) = @ + X + oy expressed as:

V(X y ) =By + Box + By U(X,y) =8 +a,X+ay +a,x* +asxy+agy’
% vix.v)-a. +a,.x+a..vt+a...x2 +a.XV + 3.V

yv

oy AN
—_—y [~< Eckit with WF
(xy. v,) ! ‘.'.x\.::!




* CST elements are poor in

_ . . : ¢ LST elements are good in
Capturing the bending behaviour 5

Capturing the bending
* For same number of elements, behaviour
true displacement and stresses not

. . For same number of elements.
obtained in CST elements

true displacement and stresses

. 1 . - a1 att . . .
Fig below shows the variation of obtained better in LST elements

shape function N1 for the CST

Fig below shows the variation of
element

shape function N1 for the LST

]nb“ PR

Shape Function N, for CST Shape Function Ny for 15T

Example 5.1

Evaluate the shape functions N,, M., and N; at 1he interior point P for the triangular ele-
ment shown in Fig. E5.1. ,

¥
1 3{4,7)

2 (7.3.5)

1(1.5.2)

FIGURE E5.1 Examples 5.1 and 5.2,

Solution Using the isoparametric representation {Eqgs. 5.15), we have
3.85 = 15N, + TN, + 4N, = —2.5£ + 39 + 4
48 = 2N, + 35N, + TNy = —56 ~ 350 + 7

These two equations are rearranged in the form




2.5¢ - 3 = 0.15
56+ 359=22
Solving the equations, we obtain ¢ = 0.3 and 7 = 02, which implies that

N=03 N=02 N=05 .

In evaluating the strains, partial derivatives of 1 and are to be taken with respect
tox and y. From Eqs. 5.12 and 5.15, we see that %, vand x, y are functions of £ and ». That

:?s;;{tigl S.{;{nit?jc: Efi:}v]r: ?:::Lwaﬂy v = 2¥(&m), (¢, 9)). Using the chain rule for
du _ dUdx gudy
d¢ - &xE.E_ ¥ QE
U _ dudx Judy
h_ﬂa+$£
which can be written in matrix notation as

f 3

ou | [ax ay7(au)
N | o |]ox
ou dx dy {au
) Lom o {5y
where the (2 X 2) square matrix is denoted as the Jacobian of the transformation, J:

e,
T
I

r (5.16)

ox 3y
_| e B
J ax ay 17
an o
Some additional properties of the Jacobian are given in the appendix. On taking the
derivative of x and y,
J = [xlz J’ls] (5.18)
X2z Y3
Also, from Eq. 5.16,
ou au
ox | _ ) 93¢
au J ou (5.19)
ay o
where J~! is the inverse of the Jacobian J, given by
- 1 Yz3 ‘}'13]
1
! det.l[-xu Xy3 (5-20)

detd = xj3%3 — X23M3 (5.21)




Example 5.2
Determine the Jacobian of the transformation J for the triangular element shown in Fig. ES.1.

Solution We have
J= X3 Wi — -25 =50
X113 Ya3 30 -35
Thus, det J = 23.75 units This is twice the area of the triangle. If 1,2, 3 are in a clockwise

order, then det J will be negative. -

From Eqs. 5.19 and 5.20, it follows that

o » ou " du

— 3Tr — Na—

ox{ _ 1 o an (5.23a)
du detJ x due +x du
— —=X337 . 135

oy ? at an |

Replacing « by the displacement v, we get a similar expression

dv v, Jv i av

i A — Wya—

ax | _ 1 & a7} (5.23b)
dv det¥ | _ .3% ¢ ..2%

ay 233 135,

Using the strain—displacement relations (5.5) and Egs. 5.12b and 5.23, we get

- I

au
ax
- dov >
dy
du o
h ay dx r
1 y2a(q — gs) — nalgy — gs)
= deid —x23(q2 — gs) + x13(qs — gg) (5.24a)
—xza{qy — gs) + xa(g; — gs)y + Yealg — 9e) — ¥13(Gs — Gs)
From the definition of x;; and y;;, we can write ¥31 = —yizand ¥ = Wi — Wi,

and so on. The foregoing equation can be written in the form

1 Yosth + Yaigs + yiogs
€ = JetJ ) F3292 T X3y + X296 (5.24b)
Y3z F Yasqr + Xisga + Qs + X215 + V09

This equation can be written in matrix form as

€ = Bq (5.25)

\.\:rhere Bis a (3 X 6) element strain—displacement maitrix relating the three strains to the
six nodal displacements and is given by

1 [3 0 yu O y, o0
derg| O ®2 0 x5 0 xy, (5.26)
X3o Yas Xia Vi, Xay Yia

It may be noted that all the elements of the B i
. matrix are i rms
of the nodal coordinates. constants expressed in e

Example 5.3

Find the strain—nodal displacement matri
. rices B* for . {
numbers given at the corners, the elements shown in Fig. E5.3. Use foca




- Jin.
FIGURE ES.3

Solution We have
1 [hs 0 w 0 0}
Bl=——| 0 x, 0 x;3 0 x5
f32 ¥ i3 Y Xu Mz
[ 2 0 0 0 -2 o}
6 -3 ¢ 3 0 0
-3 2 3 0 0 -2

where det J is obtained from x;330; — X303 = (3)(2) — (3)(0) = 6. Using the local num-
bers at the corners, B? can be written using the relationship as

-2 0 0 0 2 0
B=- 0 3 0-3 0 0 a

o=

3 -2 -3 0 0 2

Potential-Energy Approach
The potential enerﬁy of the system, I1, is given by
I =%_/5TDetdA - fuT&dA - /uTTtdf-— Eufl', - (527
A A L i

In the last term in Eq. 5.27, i indicates the point of application of a point load P; and
P=[P, P,,];r. The summation in i gives the potential energy due to all point loads.

Using the triangulation shown in Fig. 5.2, the total potential energy can be written
in the form

M= ;%[:TDetdA - 2 _[qurdA - /LuTT:df— ‘Eu,-TP,- (5.28a)

or
n=30,-3 /uTh‘dA - EfLuTwe- SuP,  (528b)

where U, = 3 [ €"Det dA is the element strain energy.




THE FOUR-NODE QUADRILATERAL

Consider the general quadrilateral element shown in Fig, 7.1. The local nodes are numbered
as 1,2,3, and 4 in a counterclockwise fashion as shown, and {x;, y,} are the coordinates of
node i. The vectorq = [q,,4,...,¢s]" denotes the element displacement vector. The dis-
placement of an interior point Plocated at { x, y) isrepresented asn = [(x. y) v(x. ¥ )

Shape Functions

Following the steps in earlier chapters, we first develop the shape functions on a maste?
element, shown in Fig. 7.2. The master element is defined in £-,m-coordinates (or natural
coordinates) and is square shaped. The Lagrange shape functions where i = 1, 2,3.and
4,are defined such that N is equal to unity at node # and is zero at other nodes. In par-
ticular, consider the definition of N;:

N =1 atnodel

=0 atnodes2,3 and4 (7.1)
‘ 96

FIGURE 7.1 Four-node quadrilateral element.

-
-
[
L
e -]

{1.1)
3

P(f.-ﬂ)

y

o, o |

1 -2
(-1, -1} (1, -1

FIGURE 7.2 The guadrilateral element in £, 5 space (the masrer alement).

Now, the requirement that &, = 0 at nodes 2, 3, and 4 is equivalent to requiring that
N, = 0 along edges & = +1 and n = +1 (Fig. 7.2). Thus, &; has to be of the form

M=c(l—£&(L—m) (7.2)
where ¢ is some constant. The constant is determined from the condition &V, = 1 at
node 1. Since §{ = —1, 1 = —1 at node 1, we have

1 = c(2)(2) (7-3)

which yields ¢ = 1. Thus,
Ny = 3(L — £)¥1 - ) (7.4)




All the four shape functions can be written as
M =31-801-n
Ny =3(1+€(1-n) (7.5)
Ny =31+ (1 +n)
No=5(1 -6 +n)

While implementing in a computer program, the compact representation of Eqgs. 7.5 18
useful

N =31+ &)1 +mm) (7.6)

where (£;,n;) are the coordinates of node .

We now express the displacement field within the element in terms of the nodal
values, Thus, if w = [u, v]" represents the displacement components of a point located
at {¢,7), and q, dimension (8 X 1), is the element displacement vector, then

u = Ng, + Nog; + Nsgs + Nyg;

v = Ny + Nogy + Nagg + Nygg (7.7a)
which can be written in matrix form as
u = Ng (7.7b)
where
M ON ON 0N 0
N = 4 7.8
|:0N1 0 AN 0N3UN4:l (78)

In the isoparametric formulation, we use the same shape functions N, to also ex-
press the coordinates of a point within the element in terms of nodal coordinates. Thus,

X = N]xl + Nzxz + N3X3 + N4x4
y =Ny + Noys + Nyys + Ny (79)

Su'bsequently, we will need to express the derivatives of a function in X-,
y-coordinates in terms of its derivatives in -, n-coordinates. This is done as follows: A
function f = f(x, y), in view of Eqs. 7.9, can be considered o be an implicit function of
£ andyas f = flx(£,n), y(£ 1)] Using the chain rule of differentiation, we have

of _ofax ofay
0§ dx 9f dyat
of _ofax  afay

10
dnp  dxdy  Jy Iy (710
or
df of
e | _ ) ox
of { = A f (7.11)

on ay




where J is the Jacobian matrix

)

_| % o
J= i 0y (1.12)

an o
In view of Eqs. 7.5 and 7.9, we have

_ 1[—(1-n)x1+(1-n)Xz+(1+n)xr(1+n)x4 ‘(1‘*1))’1"‘(1_’!}')}*2"‘(1"‘7?))’3‘(1+T?]J’4]

4 (=80~ (TE)mpt (L)t (1=€)x, |~ (1=Ep~(1+E)yt (148 ys+ (1-6)y,
(7.13a)
E':Jll Jl?.:‘
J21 j22
(7.13b)
Equation 7.11 can be inverted as
2 of
ax | ) o
of =J of (7.14a)
gy an
or
8f of
ax _L by =dp|) 0
if _detJ|:—.r’2| J,l} af (7.14)
dy on

These expressions will be used in the derivation of the element stiffness matrix.
An additonal result that will be needed is the relation

dxdy = detJ d¢ dn (7.15)

The proof of this result, found in many textbooks on calculus, is given in the appendix.

Efement Stiffness Matrix

The stiffness matrix for the quadrilateral element can be derived from the strain energy
in the body, given by

U= / joledV (7.16)
Vv

or
U=, f aTedA (7.17)
¢ [

where ¢, is the thickness of element e.




The strain-displacement relations are

Q_r{
¢ dx
E” ‘ 3w }
€= i = —
ay
Yoy du v
- + -
\ ay 0x 7
By considering f = u in Eq. 7.14b, we have
rg&\ (?_u}
) ax , — 1 jn _JIZ 6‘§ \
E{" detJ _JZI Jll 1 a_u
©a L én )
Similarly,
fa_v\ ra_l{\
) dx - 1 Jz;)_ _'JIZ ) &é P
a_'v det-' "'J(zl J“ B_v
\ayl gan y
Equations 7.18 and 7.19a,b yield
R
?E
o€
du
on
€=A
You (
9¢
v
\ 97

where A is given by
1 b —~Jiz 0 0
A = a_c_ij O 0 "'jz] jll
=~ I 52 —Ji2
Now, from the interpolation equations Eqs. 7.7a, we have

o
du

%
du
o
dv
o
fi_y
Ty

(1.18)

(7.192)

(7.19b)

(7.20)

(7.21)

(1.22)




where

“(1-m) 0 (1-m) 0 (l+g) 0 ~(1+m) O

11-0-84 0 —(+§ 0 1+ 0 (1-§ 0
49 0 -(1-m 0 (1-7) 0 (d+%) 0 —(1+n)
0 -(1-¢ 0 -(1+& 0 (1+& 0 (1-§)

G=

(7.23)
Equations 7.20 and 7.22 now yield
¢ =By : (7.24)
where |
B=AG (7.25)

The relation € = By is the desired result. The strain in the element is expressed in terms
of its nodal displacement, The stress is now given by

o =DBq (7.26)

where Dis a (3 X 3) material matrix. The strain energy in Eq. 7.17 becomes
1ol
U= E%qT[te / [ B'DB detJ d¢ dn]q (127)
¢ -1 v-1
= 2iqkyq (7.270)

where

1 pl
K=t f / B™DB detJ 4% dn (1.28)
=t J~1

is the element stiffness matrix of dimension (8 X 8}.
We note here that quantities B and det J in the integral in Eq. (7.28) are involved
funetions of £ and #, and so the integration has to be performed numerically. Methods

of numerical integration are discussed subsequently.

Element Force Vectors

Body Force A body force that is distributed force per unit volume, contributes
to the global load vector F. This contribution can be determined by considering the body

force term in the potential-energy expression

/ "idv 029
v

Using m = N, and treating the body force { = [f,, £,]" as constant within each ele-
ment, we get




UNIT -1V
ISOPARAMETRICFORMULATION

Definition:

The term isoparametric (same parameters) is derived from the use of
the same shape (interpolation) functions N to define the element’s
geometric shape as are used to define the displacements within the
element.

Alternatively:

The basic principle of isoparametric elements is that the interpolation
functions for the displacements are also used to represent the
geometry of the element.

4 4
= Z*;\'IT;' ”r , V= Zj\rf 1.‘{_
i=1 =1

« 4
1 'ri Xy s V= Zj\r; Y
3‘=1 3:1

Basic Principle of Isoparametric Elements

4
X =

~ In this formulation, displacements are expressed in terms of the
natural (local) coordinates and then differentiated with respect to
global coordinates. Accordingly, a transformation matrix [J], called
Jacobian, is produced.

~ |If the geometric interpolation functions are of lower order than the
displacement shape functions, the element is called
subparametric. If the reverse is true, the element is referred to as
superparametric.

» The isoparametric formulation is generally applicable to 1-, 2-
and 3- dimensional stress analysis. The isoparametric family
includes elements for plane, solid, plate, and shell problems. Also,
it is applicable for nonstructural problems.




» The isoparametric formulation makes it possible to generate
elements that are nonrectangular and have curved sides. So it
can facilitate an accurate representation of irregular elements.

» Numerous commercial computer programs have adopted this
formulation for their various libraries of elements.

(a) ib)
Two-Noded Bar Isoparametric Element

n
 —
x=xEm) & =Exy) . — 7
1
y=y(Em) n=nlxy) E=1
Coordinate
Transformation E=-1 >L
r a 1
(xp. J"t] "
>y 1 2

n=-1
(a) Slave (distorted) element (b) Master (pavent) element

Isoparametric coordinate transformation.

As shown in the figure. the local (natural) coordinate system (& ) for
the two elements have their origins at the centroids of the elements.
with (£ ) varying form —1 to 1. The natural coordinate system needs
not to be orthogonal and neither has to be parallel to the x-y axes.

The coordinate transformation will map the point (£ 77) in the master
element to x(< ) and y(& 1) 1n the slave element.



Isoparametric Representation
for any 2D Element

Natural

coordinates —)

Only change wrt
previous slide

Shape
functions
NE

In 3D: 1,x,y becomes |,x,y,z ete

Examples

4

N

Geometry

L.x.y

Displacement
interpolation
Uy lty




Step 2: Select Displacement Functions

In other words, we look for shape functions that map the regular
shape element in 1soparametric coordinates to the quadrilateral
in the x-y coordinates whose size and shape are determined by
the eight nodal coordinates x;, y;, X5 ¥y cevees Xp Yy

[Terms in Pascal Triangle Polynomial Degree Number of Terms Triangle

1 0 (constant) 1

x ¥y 1 {linear) 3 CST &
2 xy ¥ 2 (quadratic) 6 LST A

=]
2 xly 1t P 3 {cubic) 10 Q5T &

x(E.n)=a,+a,S+azn+a,sn
yvié.n)=as+agé+a,n+agén
{X (f"}'” _{”14‘”2@:"‘(’3*’7"'“45??1

V ("::.-??){_ s +ﬂ5‘f+ﬁ?n+”3 fi’?f

4,
{Mfﬂ)l_{l ' n ép 0 0 O 0} a,
vEem) o000 0 1 &g &y

(93 ]
x| [1 -1 =1 1][aq,] (a] [1 1 1 1][x]
Y, 1 1 -1 -1}|a a| 1/-1 1 1 -1]|x,
s = 3 > = { Tr=— T
X, 11 1 1]]|a a;| 4/-1 -1 1 1 ||~
v [ -1 1T -1}|a a) |1 -1 1 -1]|x]




(a; 1 1 1 1][x
s 1{-1 1 1 —-1]|x
x(Em=|l & n & L1 & ] - L
Em=1 & n é&nl o 1 & »n 50]4 IR I
a, | _1 -1 1 —1_ Xy |
1 §
:Z[U_‘f)(l —m)x; + 1+ EA—mp)x, +(1+E)A+m)x; +(1-E)(A+m)x,]
™
W
Xa 4

= 4

) N, x;
{.T(tf.. l"?)} [JMI 0 ‘ME D F\'Tg 0 __NT4 0 :| J"z E ! ‘\!

v(E.m) 0O N, 0 N, 0 N;y 0 Nu||x; SN, 1
V3 i=1
Xy
Yy

Shape Function for 4-Nodes quadrilateral Elements

| | I

N, =—(1-5)1—n) . Ny, =—(A+)1—n)
4 4
1. Lo .

N, :Z(1+9)(1+"?) \ Ny :E(l_‘:)(lJr’?)

These shape functions are seen to map the (£ 7) coordinates of
any point in the rectangular element in the above master element

to x and y coordinates 1n the quadrilateral (slave) element.

For example, consider the coordinates of node 1. where:
&=-1,n=-1 usg the above equation, we get x=x,, y=y,




Shape Function for 4-Nodes quadrilateral Elements

4 !_

{ 1at nodei

0 at all other nodes

ZNI.:I (i=L12 .-.n)

=1

where » = the number of shape functions associated with
number of nodes

C
i,

Vi
uy | (&
u&m| [Ny 0 N, 0 Ny 0 Ny 0w ;“‘ ";

V3 =1 ? I‘
",
Ve )

[

p=IN[d]

where 1 and v are displacements parallel to the global x and y
coordinates



Step 3: Define the Strain/Displacement and Stress/Strain
Relationships

Using Chain Rule
cf 8f ox 8f cy
o0& Ox 8§ dy o0&
cf 8f ox 8f 0y
on  Ox 8}7 oy on

(of | [ox oy [of )
0| o o ||ex
of [ |ox oy ||of
on) |on onlloy

(oN) [o6x oy ] (eN)

o8 oc o || ox
5

Can be - g = 4 > «—— We want to compute
computed | ON ox y OoN these for the B matrix

| on | on On || oy

. o 4

This 1s known as the
Jacobian matrix (J) for the
mapping (&) — (x,3)

raN,\ r%\ rg‘\ r%\
o0& ox ox 1|0

3 > >:[J]< s = 3 >:[J]l< ‘§>
on [“H o of of
L 07 | L9y | O] |07 ]




. AL X ~z Vi
] oc  0¢ 505 ' T o "
J|= =
6.T 6} i 5’},-2 i 6}?—'}
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(3x8)
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cu  ov
__|__
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= [[ [BY'[D1[B] 1 dx dy
jjf(m)dxdy =jj [(&m|T|dg dn

kl=[" [ (BI[DIBI1|J|dé dn

The shape function are:

1 - 1 n
N, =—(Q0-851-n) ; Ny == 1+E N 1—1n)
4 4
1 " . 1 i
N322(1+9)(1+’7) 5 1\'422(1—$)(l+’7)
Their derivatives:
8N, 1 N, 1 N, 1 ON, 1
S ) T o RS S, T ==QA+7n) . =——(1+
oF 4( m oF 4( m oz 4( m oz 4( m
and
oN 1 oN, 1 8N, 1 B8N, 1 3
a8 ==Y =) e =)
on 4 on 4 cn 4 on 4
[ox oy]| [Z N, 4 BN,
.._\: = Z — X Z : .VJ
] o 0O¢ i1 0¢ i1 0%
lax ay| |Loan 4 BN
_\’ ey Z — ! X; Z - I V;
[ on  on] |iF on i1 0n |
5 4 af\" v + AN,
J= = X g, =—= el
Y Zl o 12 7 5z 21 EY
4 ] 4 AT
“'irn_ﬁ:Z:aﬂllir X Jzz—&zzajﬂ ki
on I on an - on
.Tl 11
[J]— [J le} Mg Nag Nig Nygllx, 3
Ja1 T Pl'rl_..';r P"rzrg Ns,q f"'ral._r;r X3 Vs
X4 Vg

T 2&[3”1 (é:_l]_".vz (_1_§}+J;3{1+§)+.v4 (1_-:5-:}]
Jia =i[y1{r?—1]+yg (1—m)+3y,(1+n)+y,(—1—7)]
J1 =%[x1{r;—1]+x2{1—?}]+x3 (1+??)+-T4(_1_??]]

T, =i|:xl (E—1)+x, (—1— &)+ x; {1+§:|+x4{1—.§]]




» Derive the Element Stiffness Matrix and Equations
] :L{ H
21 22

‘J ‘:Ju Iy = Jy

Explicit formulation for |J| for 4 node Element

0 1-n np-¢& <&-1 |y

Jy Jp| 1 n-1 0 s+l —5-n||y,
|J'|= z—{xl X, X, x4} 1t
Jyn JIn| 8 i c—n —<-1 0 n+l ||y,
1= &+np -n-1 0 Jlv.]

~ Derive the Element Stiffness Matrix and Equations

[B]=[D'][N]

J,” a()_Jl‘) @ 0
25 "2 oap
Ny 0 N, O N O N, 0
[B]=[}_| . J“%Q_J” ?3(-3) [iol N, 0 N, 0 N © V]
S b | LD L3 AL
gl B 5 B0, 5 0b)
M enp TPes TPes "o
1
[B] |»-—]-|-[B1 B, B, &]
Fon Ve =i N 0
[B.]= 0 Ji1 Ni.r; —Jy ‘Nr,;
_J11 Nin—=Jn Nig Ja2 Nig —J12 Ni.n_




~» Derive the Element Stiffness Matrix and Equations

Jzz Nf,;_le Nf,rj 0
[‘Br']: 0 Ju JNf,n _le Nf_g
_Jll jvf,?}_")rzl N;_g Jzz Nf,;‘_"’rli Nr’,?j_
| ;
T, :E_;-I(g;—1)+;-2 (—1-&)+ 35 (1+ &) +y,(1-&) ]
]
Jp = L (7—=1)+1,(1=-n)+ 15 (1+n)+ 1, {—1—1}')}
1 -
Jy = nk (n=1)+x,(1-n)+x;(1+7)+x,(-1- rg)]
- )
Ta=7lm(E-D+n(-1-6)+x, (1+&)+x,(1-£) ]
Evaluate the stiffness matrix for the y 3, 4) ‘ (5, 4)
quadrilateral element shown in Figure 4| 3
using the four-poimnt Gaussian quadrature i o s
rule. TR
Let E = 30106 psi, v = 0.25 and h=1 in. ek e

Solution

we evaluate the k matrix. Using the four-point rule, the four points are:

(&.m)=(-0.5773.-0.5773)
)=(-0.5773.0.5773)

)=(0.5773.-0.5773)

&4.14)=(0.5773.0.5773)



i y (3,4) | (5.4
[k] = [B(—0.5773,—0.5773)] " [ D][B(—0.5773,—-0.5773)] R
|[J(=0.5773,-0.5773)]|(1)(1.000)(1.000) -
+ [B(—0.5773,0.5773)] T [D] [B(—0.5773,0.5773)] 3,2 (5.2
|[7(—0.5773,0.5773)]|(1)(1.000)(1.000)
+ [B(0.5773,—0.5773) " [D] [B(0.5773, —0.5773)]
|[/(0.5773, —0.5773)]|(1)(1.000)( 1.000)
+ [B(0.5773,0.5773)] ' [D][B(0.5773.0.5773)]
|[J(0.5773,0.5773)]|(1)(1.000)(1.000)
[J(—0.5773, -0, 5?’f:s]|—g 55 3
I 0 1—(=0.5773)  —0.3773—(-0.5773)  —0.5773-1
—0.5773-1 0 —05173-1  —0.5773—(—0.5773)
—0.5773—[—0.5773)  —(-0.5773)-1 0 —0.5773+1
| 1-(-0.5773) —0.5773(—0.5773) —0.5773—1 0
Similagly. | /(=0.5773,0.5773)]| = 1.000
b = 1000 ) ) e
4 7(0.5773, =0.5773)]| = 1.000
4

[J(0.5773,0.5773)]| = 1.000

Even though |[J]| = 1 in this example, in general, |[J]| # 1 and varies in space.

¥ (3. 4)

(5. 4

: (B1] (B2 [B5] [Bi]

[B(=0.5773,—0.5773)] = |[7(=0.5773,—=0.5773)]] [

4

k]

2

3,.32)

5.2

I —Nl._f: —J1 *?"rl,r,a 0
[Bl]z 0 JlN’ —JIN'
"'T11 Nrm _“TZI *'Vu "Tzz j" _'j 12 *']"’

[}’1 1)+, ( §)+y3(1+§)+_v4(1—§)]
Iy =;[2{—0.5773—1]+2{—1+0.577 )+4(1-0.5773)+4(1+0.5773) |=1.0
with similar computations used to obtain J,. J;, and .J,,. Also.
N:= —i (1-m= —% (1+0.5773)=—0.3943

1 1
N, =—1(1—¢') = —Z(1+0.57?3) =—0.3943



Similarly, [B-], [Bs), and [Bs] must be evaluated like [B], at (—0.5773, —0.5773). We
then repeat the calculations to evaluate [B] at the other Gauss points [Eq. (10.4.4a)].
Using a computer program written specifically to evaluate [B] at each Gauss

point and then [k], we obtain the final form of [B(—0.5773, —0.5773)] as
[B(~0.5773,-0.5773)] =

—0.1057 0 0.1057 0 0 —0.1057 0 —0.3943

—0.1057 —0.1057 —0.3943 0.1057 03943 0 03943 0

0 03943 0 0.1057 03943 03943  0.1057 —0.3943
(10.4.4h)

with similar expressions for [B(—0.5773,0.5773)], and so on.

(1 v 0 ]
- 32 8 0
=" "  |=[8 32 of 10°ps
1-» 0 0 12
00
- 2 -
¥ 3.4 | 6.9
[k] = [B(—0.5773,—0.5773)] " D][B(—0.5773,-0.5773)] 2R
|[J(=0.5773, —0.5773)]|(1)(1.000)(1.000) E
+ [B(—0.5773,0.5773) ' [D][B(—0.5773,0.5773)] R
|[7(—0.5773,0.5773)]|(1)(1.000)(1.000)

+ [B(0.5773,—0.5773)] " [D][B(0.5773, -0.5773))]
|[7(0.5773, —0.5773)]|(1)(1.000)(1.000)

+ [B(0.5773,0.5773)] T [D][B(0.5773,0.5773)]
|[7(0.5773,0.5773)]|(1)(1.000)(1.000)

[ 1466 500 —-866 —-99 -733 -500 133 997
500 1466 99 133 =500 -733 -99 -866
—866 99 1466 -—-500 133 -99 -733 500
-99 133 —500 1466 9 -—-866 500 -733
-733 =500 133 99 1466 500 -—-866 99
-500 =733 -99 -866 500 1466 99 133
133 -99 -733 500 -—866 99 1466 —-500
99 -86 500 -733 -99 133 —500 1466

k] = 10*




For the rectangular element shown previous
Example, assume plane stress condifions
Let E=30x10° psi, v = 0.3 and displacements:
u,=0,v;,=0 Y
u,=0.001,v,=0.0015

u; = 0.003, v, =0.0016

uy, =0,v,=0

Ewvaluate the stresses at s=0, =0

Solution
B| = [|B,] |Bs] [B;] |B
1
[B(0,0)] = 70,0 ]|[81 0)] [B2(0,0)] [Bs(0,0)] [Bs(0,0)]
Example 3 [ o 1 0 —l'l 2
1 -1 0 1 o0f)2 .
|[J(00}]|=§[3 55 3] D —1 0 1 4 ¥ (3,4 | (5,9
1 0 -1 of(4 0
1 2
I i 3, 2) {5. 2)
= —|— — ol
=gl—2 2 2 24,
4
[[7(0,0)]] =1
Jy N, . —J, N, 0
[Br] = 0 Ji }V —Jy J\f
S Niy =dn Nix Iy Ni —Jn Ny,
1 i §
T = [(E- D+ (1= s (149 1 1, (1-9)]
JM=%[Z(D—1)+2(—1—0)+4(1+D)+4(1—0}]=1
Similiarly J;, =0, J,;=1, J,,=0
1 1 1 1 1 1
N, .=—(1-n=--(1-0=—= Similarly ¥N,.,=—. N,.=— and N,.=——
==y A ==L -0 == 2=y M=y and Ny ==
1 1 I 1 1 1
Ny =—£(l—§}=—1(1—0)=—z Similarly N, , Y N,,= 1 and N,



=D
=

-3 0 i 0
Bil=|0 -} B]=| 0 -} (B3]
- - iy

{0} = [DI[B{d} =

Il
| ———
e —

} ai-

| |
L L =] |

H—.
| a- o

|
—

= =

-
=

0
0
0.001

i 03 o |[-025 0 025 0 025 0 025 0 0.0015
w03 1 0 0 —025 0 —0.25 0 0.25 0 0.25 .
(30)

0 0 035 | _p25 025 —025 025 025 025 025 025 %%
T 0.0016

0
3.321 10*
{6} = ¢ 1.071 10* ; psi
1.471 104

Higher-Order Shape Functions

~ In general, higher-order element shape functions can
be developed by adding additional nodes to the sides
of the linear element.

» These elements result in higher-order strain variations
within each element, and convergence to the exact

solution thus occurs at a faster rate using fewer
elements.

» Another advantage of the use of higher-order
elements is that curved boundaries of irregularly
shaped bodies can be approximated more closely than
by the use of simple straight-sided linear elements.




Shape function of a quadratic isoparametric

element
N =21 =5)(1 = 0)(=s—1-1)

Ny=L(14s)(1=t)(s—t-1)

Ny=1(1+s)(1+0)(s+1-1)

Ny=Y(1=s)(1+0)(=s+1-1)
or, in compact index notation, we express
Ny =31+ ss)(1+ 1) (ss; +tt; — 1)
where i is the number of the shape function
si==1,11,-1 (i=12,3,4)

=—1,—-1,1,1  (i=1,273,4)

Ng
N7 =

Ns

— Edges = +1

5 =1

bl s [ [l

Figure 10-16 Quadratic isoparametric element

For the midside nodes (i = 5,06,7.8).
Ns =

(=0 (L+s)(1 —5s)
(I +s)(1+1)(1 —1)
(I + (1 +s)(1 —s)
L1 —s)(140)(1—1)

Shape function of a cubic isoparametric element

For the corner nodes (1 = 1,2,3,4),

Ny =351+ ss)(1 + 11:)[9(s* + 1*) — 10]

For the nodes on sides s = +1 (i =7,8,11,12),

Ni =35 (1 +s50)(1 + ;)1 = %)

with 5; = +1 and ¢, = iJ{.

For the nodes on sides 1= +1 (i = 5,6,9,10).

Ni =5 (1 + 1) (1 + 9ss;) (1 — %)
1

with ;= +1and s; = + T

Figure 10-18 Cubic isoparametric element




Definition of an axisymmetric solid

» An axisymmetric solid (or a thick-walled body) of revolution is
defined as a 3-D body that is generated by rotating a plane
and is most easily described in cylindrical coordinates. Where
z is called the axis of symmetry.

» If the geometry, support conditions, loads, and material
properties are all axially symmetric (all are independent of 0 ),
then the problem can be idealized as a two-dimensional one.

Examples of an axisymmetric solid

Problems such as soil masses subjected to circular footing loads,
thick-walled pressure vessels, and a rocket nozzle subjected to
thermal and pressure loading can often be analyzed using
axisymmetric elements.

I, W

/
-4

Footing load

1_.

Soil mass

Plan view



FE axisymmetric elements

axisymmetric problems can be analyzed by a finite element of
revolution, called axisymmetric elements. Each element consists of a
solid ring, the cross-section of which is the shape of the particular
element chosen (triangular, rectangular, or quadrilateral elements).
An axisymmetric element has nodal circles rather than nodal points

axisymmetric element jjm

Eg uations of Equilibrium:

The three-dimensional elasticity equations in cylindrical
coordinates can be summarized as follows

+X,.=0

oo, 1019 0T, o, -0y
— + +
or r 06 Oz r
or, 16 CTg.
0 a, 6z 2
A A1 +—T,9+Y; =0
- - ré ¥
cr r 00 Oz F
0t 10T, &o, 1
? ————t—=+—T,.+ L5 =0
Or r 0d oz r

o




The three-dimensional strain-displacement relationships of
elasticity in cylindrical coordinates were u, v, w are the
displacementsin ther, 8,dz, respectively, are:

o 1l du ©Ev v}
Ep — . Yre = ot ——
or roe oér r
1 ov N U EE'er cu
S — — . o » Vo =
ryr ol r or 0Oz
ow cv 1 ow
S: —_ , ;}J"Hz = — ——
oz cz r o0 J

The three-dimensional stress-strain relationships for isotropic
elasticity are:

l—v Vv v 0 0 0

o, g,
Vv 1—v v 0 0 0

Og €g
Vv Vv 1—v 0 0 0

7= E 1-2v £z

ro| Qevya-219| © 0 0 5 0 O 1y,

1—-2v
T,. 0 0 0 5 0 -
To- 0 0 0 0 1_22” Y-



In axisymmetric problems, because of the symmetry about the z
-axis, the stresses are independent of the @ coordinate.
Therefore, all derivatives with respect to @ vanish and the
circumferential (tangent to @ direction) displacement
component is zero; therefore,

ﬂ/r'-f»‘:?/ﬂ::o and r}”ﬁ':rﬂ::O
cu iU cw Cut N ow
8 s . 86‘ e — 5 8: s . j/ - s
" Or e oz ’ oz oOr

Derivation of the Stiffness Matrix and Equations

Step 1: Discretize and Select Element Type

b z.w
My g)
((r; v 2;)
| T
» L0

Typical slice through an axisymmetric solid Discretized into triangular elements



Ui
,f . Wi
d;
;
— .o = A b
y=1d; =1
J
fim,
H?}I
gwm;

(u., w;) = displacement components of node i in the r and z directions,
respectively.

Step 2: Select Displacement Functions

u(r,z)=ay+a,r+asz

wr,z)=ay +asr+agz

’ u(r,z)l ay+a,r+asz 1 r z 0 0 0 403
w(r, z)J a, +asr+agz 90 0 1 =» =z|laj




H-:a1+a2r-+a3z

J

7 " :a1+ﬂ2rnr+ﬂ3zn

n

Wi

w?ﬂ

In Matrix Form

- ~ —

a 1
4 a2 F= 1
Hajr‘ _l

”-’71
|
4 (12 F:a
43
1
24=\1
1

X
X

J

T

a;

B;
Vi

X;

J

m

J

J

Vm

:a4+a5r-—|—a62

— dy + as iy, + dg <,

p;

Vi

2A=x,..-(yj _ym)"’"xj(ym _yr')+‘xm(yi _J’j)

:{If-l—a

jta

m

Ais the area of the triangle

o

W ¢
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(Ii:szm—Zj?‘m (Ij-:?}uzf—zm?} (_Im:f}zj—sz'j
ﬁi:‘zj_zm ﬁjzzm_z.i ﬁmzzi_zj
Vi =Tm —7; Vi =T = Tm Ym =1 —F

L[93

_afI a; .:xm_ #uix
W =—1 ] Lu, |
u ~ 54 rooz|| B /Bj Lo U;

Vi Vi Vm | ()

| au +ou +a,u,
fu} = Y 1 r z] Pu;+ P+ pu,
AT SIS

u(r,z)= i{(a’f +pr+yu+(a,+fr+yzu +(a,+p,r+y,2) um}

1
w(r,z)= a{(ar_ +pr+yz)w + (a}. + ﬁjr + ;V}.z) W, + (a, +p r+y,2) wm}

u(r,z) Nu +Nu +Nu,
wi= w(r.z)| | N, +Nv. +N,v,




u(r,z) N, +Nu, +N,u,
R

w(r,z) Nyv,+Nv.+N,v, |

N, = 1 —(a, + fr+7,2)

24
|
N, = 2A(a +ﬂr+;fz)
1
ZA(a +pB.r+7,%)
N, 0O N, 0 N, 0
{'7/}_ O Ni 0 Nj 0 Nm <

N, 0 N 0 N, O
SIE I |
0 Ni" O Nj 0 N.i'”

=



Step 3: Define the Strain/Displacement and Stress/Strain Relationships

- 3
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£ Oz
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0 7i
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¥
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w,
.
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w

&) =[B]{d;

Stress Strain Relationship

o} =[D][B]{d}

.
_ JZ — E
g (I+v)(1-2v)
T.i":

ﬁ_j 0 /Bm
0 Y 0
;I/.Z }/ z
+f,+ 0 —Z2+p +-=
¥ ¥
7, B, Vm
_ 5 0
0 Vi
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1—v Vv Vv 0
V 1—v Vv 0
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Step 4 :Derive the Element Stiffness Matrix and Equations

(&)= [|[ [BY [D1[B]dV
[k]=27 ﬂ [BY [D][B] rdr dz

1) Numerical integration (Gaussian quadrature)
2) Explicit multiplication and term-by-term integration.
3) Evaluate [B] at a centroidal point of the element

Ltr _ Z;tz t+z,
7Z=7 =

3 3

[B(7.Z)]=|B]

[k]=277 A[B] [D][B]

Example 1

For the element of an axisymmetric body rotating with a constant
angular velocity @ = 100 rev/min.

Evaluate the approximate body force matrix, include the weight
of the material, where the weight density p,, is 0.283 Ib/in®.

The coordinates of the element (in inches) are shown in the
figure.

(2.3)
3

The body forces per unit volume Sw
evaluated at the centroid of the element
are l—F—7 333§ -4 ("

. =&.333 In.— ;
Z,=0.283 Ib/in? I .

(2.2) (3.2)
— Axis of symmetry




83 1b/in”)

R, — 2 ' d\ /1 min\]* (0.2
Ry =wpF=| 100 rc_\ (ana e (
min \ rev 60 s (32.2

R, = 0.187 Ib/in’
2nFA  2n(2.333)(0.5)
3 3

Jo1r = (2.44)(0.187) = 0.457 Ib

> .y
=24 1n"

fo- = —(2.44)(0.283) = —0.691 b (downward)

x 12) in./s.2

(2.333 in.)

PDw
All r-directed and z-directed nodal
body forces are equal
l<-7:2 333 in—»4C
” ) . __ i | 2
frr = 0457 1b fp2- = —0.691 1b .09 8.5

foyy = 045716 f,;. =—0.691 Ib

~—— Axis of symmetry
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UNIT 5
DYNAMIC ANALYSIS
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Syllabus
Dynamic Analysis: Formulation of finite element model, element matrices,

evaluation of Eigen values and Eigen vectors for a stepped bar and a beam.

OBJECTIVE:

To learn the application of FEM equations for dynamic analysis

OUTCOME:

Solve dynamic problems where the effect of mass matters during the analysis
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UNIT-V
DYNAMIC ANALYSIS

Dynamics is a special branch of mechanics where inertia of accelerating masses must be considered
in the force-deflection relationships. In order to describe motion of the mass system, a component
with distributed mass is approximated by a finite number of mass points. Knowledge of certain
principles of dynamics is essential to the formulation of these equations.

Every structure is associated with certain frequencies and mode shapes of free vibration (without
continuous application of load), based on the distribution of mass and stiffness in the structure. Any
time-dependent external load acting on the structure, whose frequency matches with the natural
frequencies of the structure, causes resonance and produces large displacements leading to failure
of the structure. Calculation of natural frequencies and mode shapes is there for every important.

In general, for a system with on' degrees of freedom, stiffness 'k' and mass 'm' are represented by
stiffness matrix [K] and mass matrix [M] respectively.

Then

(K] - o [M]) {u} = {0}
(IMI"'[K]1 - &’ [1]) {u} = {0}

Here, [M] is the mass matrix of the entire structure and is of the same order, say n x n, as the stiffness
matrix [K]. This is also obtained by assembling element mass matrices in a manner exactly identical
to assembling element stiffness matrices. The mass matrix is obtained by two different approaches,

as explained subsequently.

A structure with 'n' DOF will therefore have 'n' eigen values and 'n' eigenvectors. Some eigen values
may be repeated and some eigen values maybe complex, in pairs. The equation can be represented
in the standard form,

[Al{x}= Ai{x}i.

In dynamic analysis, wi, indicates ith natural frequency and {X}; indicates ith natural mode of

vibration.

A natural mode is a qualitative plot of nodal displacements. In every natural mode of vibration, all
the points on the component will reach their maximum values at the same time and will pass through
zero displacements at the same time. Thus, in a particular mode, all the points of a component will

vibrate with the same frequency and their relative displacements are indicated by

- 7&{
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the components of the corresponding eigen vector. These relative (or proportional) displacements
at different points

on structure remain same at every time instant for undamped free vibration.

Hence, without loss of generality, {u(t)} can be written as {u}.

Since {u} = {O} forms a trivial solution, the homogeneous system of equations
([A]-A[I]) {u} ={O}

gives a non-trivial solution only when

([AJ-A[1])= {0},

which implies

Det( [A]-A[l] ) = o.

This expression, called characteristic equation, results in nth order polynomial in A, and will therefore
have n roots. For each A, the corresponding eigenvector {u}. can be obtained from the n
homogeneous equations represented by

([KT - A[M]) {u} = {O}.

The mode shape represented by {u(t)}gives relatives values of displacements in various degrees of

freedom.

NORMALIZATION

The equation of motion of free vibrations ([K] —w?[M]) {u} = {O} is a system of homogeneous
equations (right side vector zero) and hence does not give unique numerical solution.

Mode shape is a set of relative displacements in various degrees of freedom, while the structure is
vibrating in a particular frequency and is usually expressed in normalized form, by following one of
the

three normalization methods explained here.

oJla
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(a) The maximum value of anyone component of the eigenvector is equated to 'l' and, so, all other
components will have a value less than or equalto'1'.
(b) The length of the vector is equated to '1 ' and values of all components are divided by the length
of this vector so that each component will have a value less than or equal to '1".
(c) The eigenvectors are usually normalized so that

{u}" Ml {u}i=1 and {u} [K]{u}i=A2,
For a positive definite symmetric stiffness matrix of size n x n, the Eigen values are all real and
eigenvectors are orthogonal
i.e.,

{u},T[M] {u},=0 and {u}"[K]{u},=0 V i%j
MODELLING FOR DYNAMIC ANALYSIS

Solution for any dynamic analysis is an iterative process and, hence, is time -consuming. Geometric
model of the structure for dynamic analysis can be significantly simplified, giving higher priority for
proper representation of distributed mass. An example of a simplified model of a water storage tank
is shown in Fig. Below, representing the central hollow shaft by long beam elements and watertanks

at two levels by a few lumped masses and short beam elements of larger moment of inertia.

oJLa
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MASS MATRIX

Mass matrix [M] differs from the stiffness matrix in many ways:

(i) The mass of each element is equally distributed at all the nodes of that element

(ii) Mass, being a scalar quantity, has same effect along the three translational degrees of freedom
(u, vand w) and is not shared

(iii) Mass, being a scalar quantity, is not influenced by the local or globa coordinate system. Hence,
no transformation matrix is used for converting mass matrix from element (or local) coordinate

system to structural (or global) coordinate system.

It
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Two different approaches of evaluating mass matrix [M] are commonly considered.

(a) Lumped mass matrix

Total mass of the element is assumed equally distributed at all the nodes of the element in each of
the translational degrees of freedom. Lumped mass is not used for rotational degrees of freedom.
Off-diagonal elements of this matrix are all zero. This assumption excludes dynamic coupling that
exists between different nodal displacements.

Lumped mass matrices [M] of some elements are given here.

Lumped mass matrix of truss element with 1 translational DOF per node along its local X-axis

pAL 0]
[M]= ——r{ \

Lumped mass matrix of plane truss element in a 2-D plane with2 translational DOF per node

(Displacements along X and Y coordinate axes)

1 0 0 0]
01 00
m]- £2=
210 0 1 0
00 0 1]

Please note that the same lumped mass is considered in each translational degree of freedom
(without proportional sharing of mass between them) at each node.

Lumped mass matrix of a beam element in X-V plane, with its axis along x-axis and with two DOF per
node (deflection along Y axis and slope about Z axis) is given below. Lumped mass is not considered

in the rotational degrees of freedom.

I 0 0 0
pp.,Lﬂnun
M]- 0010
00 0 0

Note that lumped mass terms are notincluded in 2nd and 4th rows, as well as columns corresponding
to rotational degrees of freedom.

Lumped mass matrix of a CST element with 2 DOF per node. In this case, irrespective of the shape of
the element, mass is assumed equally distributed at the three nodes. It is distributed equally in all

DOF at each node, without any sharing of mass between different DOF

L% ?'s
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(b) Consistent mass matrix

Element mass matrix is calculated here, consistent with the assumed displacement field or element
stiffness matrix. [M] is a banded matrix of the same order as the stiffness matrix. This is evaluated
using the same

interpolating functions which are used for approximating displacement field over the element. It
yields more accurate results but with more computational cost. Consistent mass matrices of some
elements are given here.

Consistent mass matrix of a Truss element along its axis (in local coordinate system)

fu’ = u v]
[N}T=[N| N;]
where le{ili_}
2
and N =(1+E"]I
)

[M]= [[NJo[N] av = 'IA[N]p[N |

= [ApINIINT el ) o/

(x,+xz)+(x2 -x

Hﬁl‘e, K=N]xl+NIXI= 5

e

and dx =

dx :
(3o

AJ\,{-
b o
o
o
ey

[

P
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Using the values of integration in natural coordinate system,

ml-a(L] [ Da]0-92  (+olee

_pa| Ji=eyar fli-g2)a
8 | f-g2)ae [(+2)ae

_pAL[[e-g2+£2/3) (e-2'13)
T8 |lg-g'3) E+E2+E/3)
_pAL[8/3 4/3] pAL[2 1
© 8 |43 813 6 |1 2

Consistent mass matrix (if a Plane Truss element, inclined to global X-axis -Same elements of I-D mass
matrix are repeated in two dimensions (along X and Y directions) without sharing mass between

them. Mass terms in X and Y directions are uncoupled.

1 0
_pAL{0 2 0
611 0 20

010 2

M]

Consistent mass matrix of a Space Truss element, inclined to X-Y plane) -Same elements of 1-0 mass

matrix are repeated in three dimensions (along X, Y and Z directions) without sharing mass between

them.
(2 0 01 0 0]
o 200 1 0
0 0 2 0 01
[M]= pAL
611 00 2 0 0
01 0 0 2 0
_'I} 0 1 0 0 2_

.E'(Q

e
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Consistent mass matrix of a Beam element

[M]zpa[%] _f{H}T {H}dt with Hermite shape functions {H} as used in a

beam element.

2232+ %)
Li-g+8? +£7)
202 +38-£%)
Lf1-g+82 48

b2-3t+8) Li-t-g2+8) 202+32-8) Ll-1-z+e2+8 )z
156 22L 54 —13L
pAL| 22L 412  13L 3L
20| 54 13L 156 -22L
—13L -3 -22L 4I?
Consistent mass matrix of a CST element in a 2-D plane

[N]’:[N‘ 0 N, 0 N, n]

0 N, 0 N, 0 N,

M]= [INJp[NT av =t [INJo[N]" dA

pAL
128

e |

2 0 1 010
2 01 01
ptA 2010
T2 2 0 1
Sym 2 0
L 2_

Note: Natural frequencies obtained using lumped mass matrix are LOWER than exact values.

Example 1 : Find the natural frequencies of longitudinal vibrations of the unconstrained stepped shaft of areas
A and 2A and of equal lengths (L), as shown below.

24 A

— L e L ——]

Solution: Let the finite element model of the shaft be represented by 3 nodes and 2 truss elements (as only
longitudinal vibrations are being considered) as shown below.

g
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Dynamic analysis

1. Longitudinal vibration of bar
Fimite element equaticn,
(IK[-Im)o*) {n}

whers, Stiffriess masris, [K ] [_: _:]

I
,J ] for consistent mass matrix

Mass matrix, [ m ]

[m] = % [l ?]fm[ump&dmmlumrix

2. Transverse vibration of beam
Finile element equation,
T[K]-[m]et} {u}

I
——
[

12 6f =12 &l
6/ 41 =67 27
where,  Stiffress matrix, [K] = _Er,_!ll_ 1z 61 12 T

G0 3R —&) 42
136 1l 54 -134
. _ pAL| 221 4P 131 -3p
Massmatric, [00] = "0 | s 0 156 -mi
131 =3 -220 4
fior consistent Moss malrix

1 o
AL (8@ L]

|m] = Eat for lumped mass metriz
1 1] L]
a L]

| Example_ Find the naiural frequency af lengitudingl wibraion of the -

unconsirained stepped bar a5 shown
. il
Elrment (1)
Ay 2A Elemenl {Z)
Ao =i
i L2 ) LiZ
I 1 i HK— i
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Ay=2A Edérmant (2)
Ay =
1 @ o @ 3
e
Fig. i,
Element (1) Element (2}
e, Ay = 24 Arca_ A, = A
: L L
Length, L, = 3 Length, 1, = 5
Young's modules, E; = E Woung's modulus, E; = E
De'ﬁ"% e =P DC'n!it‘_!.I, By = p

Too fimd: Matural Frequencies of the rod.

Efolution: The bar with two clement and 3 nodes are as shown in Fig.(ii). The stiffeess
miatrix. of the two clements are,

Stiffness matrix for Element (1),

]
E2
m
o
I
—
]
ed

[k ]

1

1

1
e

Similarly, Stiffness matrix for Element (),
1 =1
(K] = ALE‘ [_ ]

€. B 7 N «(2)

Assemble the stiffness matrix,

1

2 -2 on
(K] = 2 3-I]2 -3)
0

Mass Matrix for Element (1),

[m] =

[m] =

=* DEPARTMENT OF MECHANICAL ENGINEERING



12
pAL 4 21
(m) = 53 [2 ‘]2 . ()

Similarly, Mass matrix for Element (2),

Pl zn]-f"_*(%_) 2!]

(mgd==rg— 1y 3 6 12
23
_ BAL 2 112
(m) = "5 [123 (5)
1 2 3
R
Assemble themass matris,  (m] = E5E 12 6 12 ©
0 1 2J3

Since, the hir s umpconsmined (o degrees of freedom is fined), the finite element

squation is
[[E]-[mlal)fuy = {P}
Substitute [ K | and [ m | valees
. p-2 00 E&qzﬂ-" iy ) By
[T[-z 3-1]_.,,2 5|26 1 J mopr =Py
0-1 1 ooz Hy A
Applying boundary conditions,

PI = Pz-- P] =0
|Ma d.ngmu af freedam is Axed)
We set the determinant of the coefficient matrix equal to 2ene, we have

v 2-2 0 qun
ZAE] - 22AL
T 2 03 :_m 5261

=0 ]
0 -1 o1z
Divide bothsides by [ 5 ),
-2 0] geRALraczoe
- 2 las]] =
e Y -0
-1 0 =< Lloraz2]
Divide both sides by [ 5+,
2100 m:P;LILHIn
2 3_1] sap— 16| =0
L o-1 1l = Lo 2l
2-1 10 - 420
plia?
B Rl FAL N R L
0= 1 bz
2 mE
Taks, Bz'%
Exuation (8) gan be rewrinten a5,
1-1 0 fazo
[_1 Fol-p261]] =0
01 1 Lo1 2}
(-2 10+ 0
= | -2 +E ISR - HEN ) = 0
] <(1+E (1-2p

= 2(1-2F)B( 2R~ (1 +FF+2 (1 F-204 A0 -267) = 0
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By simplifying the above equation, we gt

= IBP{I =25 EE-2) = 0 e ()
The raots of equatien (9 give the natural frequencies of the bar,
We kpow that, #® = P%

when, [ = 0 = m? = 0= w=0

1
]

1 12E
when, [f = ;= u.j Y ad 3‘“[{;19}] s
45E 3
wheen ﬁ! = 2 = DJ; = pLz :ngl:ﬁ.ﬂ‘z[fp]il}]zndfs

-

2. Matwral frequencies sre, w =0

rf—

.',H-ﬁ[

kg

5]
e [tp L!J]

Reseliz Matural frequencies of lengitudinl vibrstion,

=

wy = 0
i
By = 3-1-!5[ T s
: (el ™
i
wy = Egﬁlfpl-a;l] radis

Fur the bar as shown in Fig.(i) witk length 2 L, modulux of elasticity
E, hmn'msﬂ_‘pp, dnn’mnmw“a.d Jewmmemmmfmm

I-—-x
2L S—

Given:

Length, L = 2L
Young's modulus, E = E
Mass deasity, p = p
Cross-sectional area, A = A
To find: Natural frequencics.
QSolution: We can divide the bar into two elements as shown in Fig.(iii).

12 @2 @ s
L = ) L J
L 5
) Fig. (i),
Stiffness matrix for element (1):
1 2
AE i -1
(K] = [~| l]z
Similarly,
2 3
AE[ 1 =172
Element (2): (K} = -L_ 23 |]3
Assembling the element matnx,
1 2 3
AR [ 1 =1 01
[K]=—L= -1 2 -1]2 L))
L 0 -) 113
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Lumped mass matrix or consistent rass matrix can be used for solving the problem.

Lumped mass matrix for element (1):
12
pAL [t O
) (m] =37 1o 1]2
Similarly, 12
AL 1 071
Element (): (m] = % 0 I]Z
123
S 10071
Assenbling the muss matrix, [m] = &5= [0 2 02 =)
L0 0 13
(ilobal matriz, for bar element,
fIK]-wi[m]}tu) = {P)
ag] 110 ML iy P
[T -1 1 -l -mIEE—[HEDH b=t P (3
0 -1 1 00 " P,
Applying the boundary conditions,
W o= Offieed), P=0
W= .
W By =0
1 -1 0 100 0 [
= [ﬁL—E -1 2 _1] m’L[ﬂE n” H;]—.iu]
0-1 1 00 wl Lol

In the above equation, & = 0, s, negleet firs rl:rwmtl first column of [ K ] and [ m |
metri, The final reduced equation 15,

VEL oo T - o @

-

In the above equation, &, = 0, so, neglect first rl;rwml:l first column of [ K Jand [ m |
maztrix, The fimal redoced equation is,

{él_ﬁ[—zl -” “’JFELE; HH::J v il

To obmin & solution to the set of bomageneous equation in oqualmﬂ (%], we 52t the
determinant of the eoelficient matrix equal to zem,

AE[ 2 _]]-M&L-[l 1}]' -

Tl-1 1 T g1 (5
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Divide bath sides by pAL,

| *‘F—[ 1—!]_1 paL [2 0
pALM -1 1 2xpallo

- -
| _E 2 =17 a2z o0
|P1-1|:—1 1]‘5[-: :_H -0
E
Take, p e
2 -1 alfz o
|"{—| l] 1[u 1]' =0
‘Qh—ll -p
=2 l - ﬂ y
-n o [(n-3) ®
L 1
= [Hp—ll[u—g :l]—[u-l =
: .
= e e T o ]
= ui—Epi'v.-"}ir' = i
F
= afz =2phpE = 0 )
By solving the gquadratic equatian (7),
4
Mﬂ_ilﬂ —bayhl-dac
L= ={=2p) % mlj:l vk == P 1
BB
PEETTYE iR
A= (2247

oAy = 3Alp ApeD5ESp
Matural frequencies am,
We know thiat, o= o
= @ = ﬁ
= oy T m

wy = 1E5) p orads
E -
Loy = l.ﬂi'\'rﬁ':; rad’s [,P.pLz]
Similarly, iy \|| 0585 1

[, = 0763 radcec |

|| E
@y, = 076 E']—; radls

Resuli: Matusal frequencies are,

—
w = LES m radls

E
076 T radis

oy
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MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
Subject: FINITE ELEMENT METHODS
UNIT-V
TUTORIAL -V
1. Determine natural frequencies for a Steel bar as shown in figure.

A, = 1200 mm?
1 ‘Ifr A2=mmm2

¢ I ff I—-—-—x

_
-1—3[Hjmm~—l_4ﬂﬂmm‘—l

Steel bar

RN

2. a.) Write a short note on damping.

b.) Consider axial vibration of the steel bar shown in Figure., Develop the global stiffness
and mass matrices Determine the natural frequencies and mode shapes using the
characteristic polynomial technique.

A=F00mmt

o | o
»
|
=25 () rru =M= 35 O o=

3. Consider axial vibration of the steel bar shown in Fig. a) Develop the global stiffness and mass
matrices b) By hand calculations, determine the lowest natural frequency and mode shape 1and 2

ey 3

ENRRORRRRRRNRNARNNN

A, = 1200 mam*~
Ao = 900 mm2

1

»

/
P x

I
|

- 300 mm ——-i—«— 400 mm —————

Steel bar

A

E=70,000 MPa
» =0.3

P=7840 ¥ )ee

4. Write the step by step procedure to determine the frequencies and nodal displacements of the
steel cantilever beam shown in Figure.

v
/7777 20 mm
le—>|
600 mm 60 mm

E=70,000 MPa
v=0.3 "
p=7840 Ko |

5. Explain the Overview of Commercial software’s like ANSYS, ABAQUES .
SR

g iC
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MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
Subject: FINITE ELEMENT METHODS
UNIT-V
ASSIGNMENT -V

1. Determine the Eigen values and Eigen Vectors for the stepped bar as shown in Figure,
take density as 7850 kg/m® and E= 30X10°N/m??

_,.,—'-‘"'--

_,-'-"'"'-'_F-

L, A rea= = _S-rsm=
_.-'—""_'--

] A Tren Srru
ff’—‘—--l—-—‘-l

2. Define a.) Eigen value and Eigenvector
b.) Dynamic analysis

3. Determine natural frequencies and corresponding mode shapes for the figure

Take L1=1m, L2=2m, A1=2m>, A2=1m’, p = 7850 kg/m°, E = 200Gpa

Al A2

4. Consider axial vibration of the steel bar shown in Figure.6,
i) Develop the global stiffness and mass matrices
ii) Determine the natural frequencies and mode shapes using the characteristic

polynomial technique.

AeR00mut 4 e

L

o

ey 3

O ||
=25 a5 0 o=

5.) Write short note on a.) Eigen vectors for a stepped beam b.) Evaluation of Eigen values

PR RN
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%‘ DEPARTMENT OF MECHANICAL ENGINEERING



2,

PREVIOUS QUESTION PAPERS

-



R15
Code No: R15A0322
MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution —- UGC, Govt. of India)
III B.Tech II Semester Regular/supplementary Examinations, April/May 2019
Finite Element Methods
(ME)

Roll No

Time: 3 hours Max. Marks: 75
Note: This question paper contains two parts A and B
Part A is compulsory which carriers 25 marks and Answer all questions.
Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE
Questions, Choosing ONE Question from each SECTION and each Question carries 10

marks. ook
PART-A (25 Marks)

1).a What is meant by finite Element method [2M]
b Name the weighted residual techniques? [3M]
¢ Write down the expression of stiffness matrix for a truss element. [2M]
d  Define plane strain problem. [3M]
e What is CST element? [2M]
f  Write down the shape functions for an axisymmetric triangular element. [3M]
g  Write the governing equation for a steady flow heat conduction. [2M]
h  Write down the expression of stiffness matrix for a beam element. [3M]
1 What is meant by discretization and assembling? [2M]
j  What is the difference between static and dynamic analysis? [3M]

PART-B (50 MARKS)
SECTION-1
2 Describe advantages, disadvantages and applications of finite element analysis. [10M]
OR
3 The following equation is available for a physical phenomena
% -10x?=5; 0<x<1, Boundary Conditions; y(0) =0, y(1) =0, Using Galarkin [10M]
method of weighted residual find an approximate solution of the above differential
equation.

SECTION-II
4 For the two bar truss shown in figure, determine the displacement at node 1 and [10M]
stresses in element2, Take E=70GPa, A= 200mm®.
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OR
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For the plane stress element shown in figure the nodal displacements are [10M]
U;=2.0mm, V;=1.0mm

U= 1.0 mm,Vz= 1.5mm, Us= 2.5mm,V3=0.5mm, Take E=210GPa, v=0.25,

t=10mm. Determine the strain-Displacement matrix [B].

' 200,400

400,100
100,100

»

SECTION-III
For axisymmetric element shown in figure, determine the strain-displacement

matrix. Let E = 2.1x10°N/mm? and v= 0.25. The co-ordinates shown in figure are
in millimeters.

s| o500
[10M]
1 2 I
0, 0 (50, 0)
OR
Evaluate the following integral using Gaussian quadrature, so that the result is
exact. [10M]
flr)= f_ll(Hlsz +2x —sinx) dx
SECTION-1V

Estimate the temperature distribution in a fin whose cross section is 15Smm X 15mm

and 500mm long. Take Thermal conductivity as S0W/m-k and convective heat
transfer coefficient as 75 W/m?-k at 25°C. The base temperature is assumedto be [10M]
constant and its value may be taken as 900°C. And also calculate the heat transfer

rate?

OR
For the beam loaded as shown in figure, determine the slope at the simple
supports. Take E=200GPa, I=4x10°m*.

24kN/m

/
/ el o
B 5m /% Sm T
) X 'l Page 3 of 3




SECTION-V
10 Determine the Eigen values and Eigen vectors for the beam shown in figure

y AlFim- As-0.5m>

[10M]

E=30x10°N/m?
p=0.283kg/m’

_ 10m S5m

v

A
v
A

OR

11 Write short note on [10M]

(a) Eigen vectors for a stepped beam

(b) Evaluation of Eigen values.
Lt
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R15

Code No: R15A0322
MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution — UGC, Govt. of India)
lll B.Tech Il Semester Regular Examinations, April/May 2018
Finite Element Method
(ME)

Roll No

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B
Part A is compulsory which carriers 25 marks and Answer all questions.
Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions,
Choosing ONE Question from each SECTION and each Question carries 10 marks.

ook ook skok

PART- A
la.  What is the shape function? Give its practical importance. [2]
b) Briefly discuss the Gherkin’s approach in solving FEA problems [3]
C) Define is axisymmetric element with 2 practical applications [2]
d. What are the differences between plane stress and plane strain problems [3]
e. Briefly discuss the advantages of Axisymmetric Elements [2]
f. Describe the shape functions in natural coordinates for 2-D Quadrilateral element. [3]
Write the governing equation for a steady flow heat conduction [2]
h. Write short notes on applications of FEM [3]
1. What are the practical importance of Eigen values and Eigen vectors [2]
J- Write the Gradient matrix[B] for CST element. [3]
PART -B
10 * 5 =50 Marks
2. SECTION-1 [5]

(a) A rod fixed at its ends is subjected to a varying body force as shown in Figure.1.
Use the Rayleigh-ritz method with an assumed displacement field u=a¢+a;x+ax> to
determine displacement u(x) and stress o(x)

9 E=1,A=1

A1

V, T

1 7,
'4.—1*&4-*1&..{

(b) Write the Potential function for a continuum under all possible loads and indicate
all the variables involved. Also express the total potential of general finite element
in terms of nodal displacements

Page 1 of 4
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OR

3. An axial load P = 200X10° N is applied on a bar shown in figure, determine nodal [10]
displacements, stress in each material and reaction forces. If A= 2400 mm?, A,= 600
mm?, Az= 2000 mm?,E;=70GPa,E,=200GPa, E;=67GPa

I S
P

SECTION - 11

(a) Derive the B Matrix (relating strains and nodal displacements) for an iso parametric
triangular element with linear interpolation for the geometry as well as field variables.

b) Explain why the above element is popularly known as CST. Discuss about the
advantages and disadvantages of the element

[5]

OR

5. For the truss shown in figure establish the element stiffness matrices and assemble the [10]
global stiffness matrix for the active degrees of freedom and determine a) Nodal
displacements b) Stress in the members and c¢) The reaction at the roller support, Take
E= 100 Gpa. Area of c¢/section = 100 mm? Length = 100 cm, P = 100 kN.

SECTION-III

6. Derive the B Matrix (relating strains and nodal displacements) for an axi-Symmetric [10]
1so parametric triangular element with linear interpolation for the geometry as well as
field variables.

OR

7.(a) Consider a quadrilateral element as shown in figure, Evaluate Jacobian matrix and strain- [7]
Displacement matrix at local coordinates & =0.5, = 0.5.
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10.

(0, 40) . (30, 40)

1(0, 10) 2 (30, 10)

1

(b) Evaluate the integral [ i [3ex + 2x2 +
-1 (3x+4)

using one point and two point Gauss quadrature. [3M]

]dx

SECTION-IV

Heat is entering into a large plate at the rate of qo=-300w/m2 as shown in Figure, the
plate is 25 mm think. The outside surface of the plate is maintained at a temperature of10
OC. Using two finite elements, solve for the vector of nodal temperatures T, thermal
conductivity k=1.0 w/m’c

“Fo

Estimate the temperature profile in a fin of diameter 25 mm, whose length is 400mm.
The thermal conductivity of the fin material is 50 W/m K and heat transfer coefficient
over the surface of the fin is 50 W/m? K at 30°C. The tip is insulated and the base is
exposed to a temperature of 150 °C. Evaluate the temperatures at points separated by
100 mm each.

SECTION-V

Consider axial vibration of the steel bar shown in Fig. a) Develop the global stiffness
and mass matrices b) By hand calculations, determine the lowest natural frequency and
mode shape land 2

Page 3 of 4
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A; = 1200 mm?
/
7 1

M

A, = 900 mm?2

| ——

S\

f=— 300 mm

Steel bar

E=70,000 MPa
v =03

P=T7840 Y ojne

OR

[
|
400 mm

11.  Write the step by step procedure to determine the frequencies and nodal displacements

of the steel cantilever beam shown in Fig.

600 mm
E=70,000 MPa
=03 "
p=7840 'M‘: : m:)
skkskkk

V
2774 __ 20 mm
e—| T
60 mm
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Note: This question paper contains two parts A and B

1.a.

0@ w0 0 O

. e

Choosing ONE Question

Part A is compulsory which carriers 25 marks and Answer all questions.
Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions,
from each SECTION and each Question carries 10 marks.

PART - A
Briefly discuss weighted residual method for giving approximate solutions for
complicated domains
Write the stiffness matrix for 1-d element with linear interpolation functions
Differentiate iso-parametric, sub-parametric, and super parametric elements?
What is the difference between plane truss and space truss?
What are the uses of natural coordinates in 2d- Quadrilateral elements
What are the suitable applications of axi-symmetric elements in FEM?
Write the governing equation for FEA formulation for a fin
Express the stiffness matrix for a 1-D conduction problem

What do you understand by mode shapes?
How principle of minimum potential energy is useful in dynamic analysis of systems
PART-B 10 *5 =50 Marks
SECTION-I

Derive the equations equilibriums for 3-D body

OR
An axial load P=300X103N is applied at 200 C to the rod as shown in Figure below.
The temperature is the raised to 600 C .
a) Assemble the K and F matrices.
b) Determine the nodal displacements and stresses.

~—— 200 mm > i < 300 mm ————'-‘
. | 2

1 ;4 —> P é EE. ¢
Z) 21 Z

(D) FIGURE 2)

Aluminum Steel
E; =70 %X 10° N/m? - E, = 200 X 10Y N/m?
Ay = 900 mm? A, = 1200 mm?

@, = 23 X 107 %per"C a, = 11.7 %X 107 %per°’C



4.

SECTION-II

a) Write the difference between CST and LST elements [3M]
b) For point P located inside the triangle shown in the figure below the shape functions

N1 and N2 are 0.15 and 0.25, respectively. Determine the x and y coordinates of point  [7M]
P.

3(3,5)
y
2(4,2)
1(1,1)
X
OR

For the configuration shown in Fig. determine the deflection at the point of load application [10M]
using a one-element 100 N used, comment on the

stress values in the e

~ 30 mm

w—p SON

20 mm

= 10mm
E = 70.000 MPa

Derive the strain displacement matrix for axisymmetric triangular element Discuss  [10M]
advantages of axisymmetric modelling in FEM
OR

Figure shows a five — member steel frame subjected to loads at the free end. The cross section  [10M]
of each member is a tube of wall thickness t=1 cm and mean radius=6cm. Determine the

following:

a) The displacement of node 3 and

b) The maximum axial compressive stress in a member

S .
=
7
S0 con '2’5 4% cm 3 10 000 N
Z,_.-—*—'_"' a4 ; 000 N
A= ]
l———— 8O e 45 cm |
(Steal)
(&)
(o)
Find the temperature distribution in the one-dimensional fin shown in Figure below [10M]

using two finite elements.



10.

11.

=5 watts

Tm = 400C Z Cm2 'OK
140°C \ @\
1cm radius
End surface A
- L=5cm -
k=70 watts
cm-°K
OR

(a) A 20-cm thick wall of an industrial furnace is constructed using fireclay bricks that
have a thermal conductivity of k =2 W/m-°C. During steady state operation, the furnace
wall has a temperature of 800°C on the inside and 300°C on the outside. If oneof the
walls of the furnace has a surface area of 2 m? (with 20-cm thickness), find the rate of
heat transfer and rate of heat loss through the wall.

(b) A metal pipe of 10-cm outer diameter carrying steam passes through a room. The
walls and the air in the room are at a temperature of 20°C while the outer surface of the
pipe is at a temperature of 250°C. If the heat transfer coefficient for free convection
from the pipe to the air is h = 20 W/m?-°C find the rate of heat loss from

the pipe.

For the two-bar truss shown in Figure below, determine the nodal displacements,
element stresses and support reactions. A force of P=1000kN is applied at node-1.
Assume E=210GPa and A=600mm?2 for each element.

4 m
Figure two-bar truss.

OR
A bar of length 1 m; cross sectional area 100 mm?2; density of 7 gm/cc and Young’s
modulus 200Gpa is fixed at both the ends. Consider the bar as three bar elements and
determine the first two natural frequencies and the corresponding mode shapes.
Discuss on the accuracy of the obtained solution

skeskskoskok

[SM]

[SM]

[10M]

[10M]



MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
B. Tech III Year II Semester
FINITE ELEMENT METHODS

l.a)  Derive the interpolation functions at all nodes for the quadratic serendipity
element.
b)  Evaluate the integral by using one and two-point Gaussian quadrature and
compare with exact value.
=0 ] 13442

X~ +x
-1 —1(

y + Xy 2 4+ sin 2x +cos 2y)dx dy
2.a) Clearly explain the finite element formulation for an axisymmetric shell with an
axisymmetric loading. Determine the matrix relating strains and nodal
displacements for an axisymmetric triangular element.
b)  Establish the Hermite shape functions for a beam element Derive the equivalent
nodal point loads for a u.d.l. acting on the beam element in the transverse

direction and also determine stiffness matrix.

3.a)  Write about different boundary considerations in beams.
b) Determine the support reactions and maximum vertical deflection for the

continuous beam shown in Figure.1.
40 kNm

Wm
72} ;/;}B ggg
e— gy —— g —

[=160000 mm*, E=2x 107 i mnt
Figure.1

4.a)  Discuss in detail about 2D heat conduction in Composite slabs using FEA.
b)  Using the isoparametric element, find the Jacobian and inverse of Jacobian matrix
for the element shown in Fig.2, 3(a) & 3(b) for the following cases.
i) Determine the coordinate of a point P in x-y coordinate system for the § = 0.4

and n =0.6.
i) Determine the coordinate of the Q in § and n system for the x = 2.5 and y =
1.0.
il #3068) "
5.2) oF 3&
2 : &
0y 2
Fig. 2 Fig. 3 b)




5. Calculate the temperature distribution and the heat dissipating capacity of a fin
shown in Figre.4. The thermal conductivity of the material is 200 W/ m -k .. The

surface transfer coefficient is 0.5 W/m>K. The ambient temperature is 30 C. the
thickness of the fin is 1 cm.

100°C 2cm 1.5cm 1l cm

k 4
|'_lcm lcm | lc:m_’I

Figure.4

6.a)  Write the steps involved in finite-element analysis of a typical problem.
b) Determine the nodal displacements, element stresses and support reactions for the

bar as shown in Figure 5. Take E = 200 x 10° N/m?.
250 trm® 400 e

RS A

150 tmm 150 mm . 200 mem 200 trm
[ e > € >|'3':—>I

:

Figure.5

7.a)  Derive the equilibrium equation for an elastic continuum using potential energy by
displacement approach.
b)  Explain the following methods used for the formulation of element characteristics
and load matrices:
i) Variational approach i1) Galerkin approach

8.a)  With an example differentiate Between Lumped mass, Consistent mass and Hybrid
mass matrix and derive for truss element.
b)  Consider axial vibration of the steel bar shown in Figure.6,
1) Develop the global stiffness and mass matrices
i) Determine the natural frequencies and mode shapes using the characteristic
polynomial technique.

Rmavlmnt K 50 m’

e B

o

el 2

-
=25 Do =P 350 rrun =

Figure.6
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MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

B. Tech III Year II Semester
FINITE ELEMENT METHODS

1)a) Discuss in detail about the concepts of FEM formulation .How is that FEM emerged as
powerful tool. Discuss in detail about applications of finite element method.

b)Derive an equation for finding out the potential energy by Rayleigh —Ritz method. Using
Rayleigh — Ritz method, find the displacement of the midpoint of the rod shown in Fig.1.
Assume E =1, A=1, p g= 1 byusing linear and quadratic shape

functions concept. ~ )
— ()
g

Fig. 1

— X — 2

2. a) Discuss in detail about Linear and Quadratic shape functions with examples.
b) For the truss shown in fig.2 determine the displacements at point B and stresses in
the bars by considering linear and quadratic shape functions.

120KN

A=2cm’
E =75Gpo Jmcmbcrs

}7 50 cm I[ 40 cm i

Fig. 2



3.a) Consider axial vibration of the Aluminum bar shown in Fig.3, (i) develop the
global stiffness and (ii) determine the nodal displacements and stresses using
elimination approach and with help of linear and quadratic shape function
concept. Assume Young’s Modulus E = 70Gpa.

b) Determine the mass matrix for truss element with an example.

A,=1200 mm’

Ax=900 mm’

4()0mm—'|

Fig. 3

4. a) Establish the shape functions for a 3 — noded triangular element.

b) Find the deformed configuration, and the maximum stress and minimum stress
locations for the rectangular plate loaded as shown in the fig.4. Solve the problem
using 2 triangular elements. Assume thickness = 10cm; E = 70 Gpa, and
u= 033.

T

32 mm

5 Mpa

Y ¥ Y Y

<
Y

5. a) Determine the shape functions for 4 — nodded quadrilateral element.
b) For a beam and loading shown in fig.5, determine the slopes at 2 and 3 and the
vertical deflection at the midpoint of the distributed load.

10 KN/m




6. a) Clearly explain the finite element formulation for an axisymmetric shell with an axisymmetric
loading.Determine the matrix relating strains and nodal displacements for an axisymmetric
triangular element.

b) Determine the temperature distribution in a straight fin of circular c/s. Use three one dimensional
linear elements and consider the tip is insulated. Diameter of fin
is 1 cm, length is 6 cm, h=0.6 W/em? —C, Qo= 25°C and base temperature is
0=80°C.
1

7. a) Determine the element stresses, strains and support reactions for the given bar problem as shown
in Fig. 6

N
=1.2mm; L =150 mm; P=60000N; E=2X10* ;; A =250 mm.

A y

! 7
2 AE 7
é é
41 2 37 é
/ T 31 7
Z é
DL e L [

Fig. 6
b)  What are shape functions? Indicate briefly the role of shape functions in FEM

analysis.

8. a) Derive one dimensional steady state heat conduction equation.
b) An axisymmetric triangular element is subjected to the loading as shown in fig.7
the load is distributed throughout the circumference and normal to the boundary.
Derive all the necessary equations and derive the nodal point loads.

100 Mpa

50cm

»
T < >

30 cm /"
AL 50 cm 50 Mpa

Fig.7
--00000--




Finite Element Methods

l.a)  Write the strain stress relations based on generalized Hooke’s law and derive the elasticity
matrix for 3-D field problems.
c) Describe the standard procedure to be followed for understanding the finite
element method step by step with suitable example.

2.a)  Derive the stiffness matrix of axial bar element with quadratic shape functions based on first
principles.
c) Calculate the nodal displacements and forces for the stepped bar with the stiffness
values of 10 kN/m and 18 kN/m and a load of 32 kN is subjected at the end of
the stepped bar and other end of the bar is fixed.

3.a) Derive the shape functions and stiffness matrix of a two nodded beam element.
c¢) Derive the load vector for the beam element when a uniformly distributed load is
applied.

4.a) For a plane strain problem, the nodal displacements are ui = 4.4 pm, u2 = 2.2 pm, uz=2.2 pm, vi
=3.8 um, v2=2.9 pm, v3 = 4.5 pm. Take E=200 GPa, i = 0.3 and t=10mm. Find the stresses,

principal stresses. The coordinates of triangular element are 1(5,25), 2(15,5) and
3(25,15). All dimensions are in millimeters.

c) Show that the stiffness for a triangular element is [B]T[D] [B] At using variational
principle. Where A=area of the triangle and t= thickness.

5.a) Compute the strain displacement matrix and also the strains of a axisymmetric triangular element
with the coordinatesr1 =3 cm, z1=4 cm, r2 =6 cm, z2 =5 cm, r3= 5 cm, z3 = 8 cm. The nodal
displacement values are u; = 0.01 mm, wi = 0.01 mm, u2 = 0.01 mm, w2 = -0.04 mm, u3 = -
0.03 mm, w3 = 0.07 mm

b) Differentiate between Axi symmetric elements and symmetric elements with
suitable examples.

6.a) Explain the methodology to estimate the stiffness matrix of four noded
quadrilateral element.

b) Evaluate [ [e2X +x0+ 1/ (x2 + 2)] dx over the limits -1 and +1 using one point and
three point quadrature formula and compare with exact solution.

7.a) What are different thermal applications of finite element analysis? Compare the structural
analysis with thermal analysis.

b) Calculate the temperature distribution in the fin of 10 mm diameter, which is exposed to the
convective b.c. of 40 W/m? K with 30° C. The base of the fin is exposed to a heat flux of 450
kW/m? and the thermal conductivity of fin material is
30 W/m K.

8. Determine natural frequencies and corresponding mode shapes for the figure 8.

Take L1=1m, L2=2m, A1=2m>, A2=1m?, p = 7850 kg/m>, E = 200Gpa

Al A2

Fig: 8
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Time: 2 hours Max. Marks: 75
Answer Any Four Questions

All Questions carries equal marks.
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1 Briefly describe the general procedure of finite element analysis.
An axial load P =300X10°N is applied at 200 C to the rod as shown in Figure below.

The temperature is the raised to 600 C a) Assemble the K and F matrices b) Determine
the nodal displacements and stresses

~—— 200 mm —* 300 mm ‘P{
- [
Z A
1 /r G J? 1¢ —_— X
2] 7
“A i 3
FIGURE ©)
Aluminum Steel
£, =70 < 107 N/m? : E, = 200 X 10Y N/m?
A, = 900 mm? A, = 1200 mm?
a; = 23 < 10" ®per"C a, = 11.7 X 10~ % per°C

3 Determine the stiffness matrix, stresses and reactions in the truss structure shown in Figure.

E=200GPa

A=10001mm? SO0KN
— a ¥

S00mm
v

750mm

4  Estimate the displacement vector, strains, stresses and reactions in the truss structure
shown below in figure. Take A = 1000 mm? and E = 200 GPa

100 )
307 -

;_ 800 mm —fé\

600 mm

—
200 mm

5  Anaxisymmetric body with a linearly distributed load on the conical surface is shown in
Fig. Determine the equivalent point loads at nodes 2, 4 and 6.

Page 1 of 2



'0.25 MP,
z

Axis of T
symmetry <Y 02MPa

6  An Isoparametric constant strain triangular element is shown in Figure.
1) Evaluate the shape functions N1, N2 and N3 at an intermediate point P for the triangular
element.
i) Determine the Jacobean of transformation J for the element.

Node 3 (4, 7)
»

Node 2 (7, 3.5)

P(x=3.85,y=4.8)
-

Node 1 (1.5, 2)

A J

7  Describe heat transfer analysis for straight fin

8  Obtain the Eigen values and Eigen vectors for the cantilever beam of length 2 m using
consistent mass for translation DOF with E = 200GPa, p =7500kg/m?.

skeoskskoskoskk
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whkk

1 a Discuss how finite element method is evolved in the engineering field.

b Discuss the advantages and disadvantages of Finite Element Method

2 Solve for the nodal displacement and support reactions, using the principle of Min.
Potential Energy approach for the system shown in Figure.

2 3 |/ K1=1200kN/m
17 NN NN NN\ /4 K2=1800kN/m
- . 3 ‘/ K3=1500kN/m
L—»
10kN 20kN
3 Derive stiffness matrix for a Truss bar Element
4 Derive the stiffness matrix for a Three noded CST Element.

5 a Whatis an axi-symmetric problem?
b For the Axi-symmetric element shown in figure, find the Strain-Displacement Matrix.

A
3 (30, 40)
(30, 10)
1 2
(10, 10)
6 Use Gaussian Quadrature to obtain the exact value of the integral

Page 1 of 2



f(x)= f_ll 1+1T2 +2X-sInx

For the beam loaded as shown in figure, determine the slope at the simple supports.
Take E=200GPa, [=4x10°m*.

/ 24kN/m
] vl il
. Sm 7% Sm T
) ) |

Determine the Eigen values and Eigen vectors for the beam shown in figure

A1=1m2
A2=0.5m2

E=30x10°N/m?

ANANANMNANAN

P=0.283kg/m’
10m Sm

»
»

A

A
\ 4

Tk kb hdn
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All Questions carries equal marks.
L2

1 Derive the equations of equilibrium of a 3-Dimensional stressed body.
2 Consider the thin (steel) plate shown in figure. The plate has a uniform
thickness t=10mm, Young’s modulus E=20x10°N/m?.
a) Using the elimination approach, solve for the global displacement vector
b) Evaluate the stresses in each element.
¢) Determine the reaction force at the support.
l¢e——— Ocm NN
IZTn
24cm
P=100 l
3 Consider a three bar truss as s om figure. It is given that E=2X10°N/mm?.
Calculate the following: hown in
(1) Nodal displacements (i1)Stress in each member
(ii1) Reactions at the support.
ZSOIN
A
Take:
- 2
@ 500mm 4172000 mm®
A2=2500 mm
As=2500 mm?
A 4
T O =
| 1000mm
4 a

What are the elements commonly used in the analysis of 2-Dimensional

Max. Marks: 70

[14M]
[14M]

[14M]
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roblem? [04M]

Page 2 of 2



b  Derive Strain-Displacement matrix for the 3-noded triangular element. [10M]

For the plane stress element shown in figure the nodal displacements are [14M]
Ui=2 mm Vi=1mm
Uz= Imm Vo= 1.5mm
Uz=2.5mm V3= 0.5mm
A
3 (300, 400)
(400, 100)
1 2
(100,100)

»

Determine the element stresses. Assume E=200GN/m?, v = 0.3, t= 10mm.
Use Gaussian Quadrature to obtain the exact value for the following integral. [14M]

f_lliTg — 1)(s* + s)dr.ds

A wall consists of 4cm thick wood, 10cm thick glass fiber insulation and lecm [14M]
thick plaster. If the temperature on the wood and plaster faces are 20°C and -

20°C respectively. Determine the temperature distribution in the wall with 1D

linear element approach. Assume thermal conductivity of wood, glass and plaster

as 0.17, 0.035 and 0.5 W/m-°C. The convective heat transfer coefficient

on the colder side of the wall as 25W/m?-°C.

Write short note on

(a) Formulation of Finite Element model in dynamic analysis [4M]
(b) Eigen vectors for a stepped bar. [10M]
Xk ek hd
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LN
1 a  Enumerate thegeneralized procedure involved in Finite Element Method [10M]
b  Discuss the different engineering applications of Finite Element Method [05M]
2 For the vertical bar shown in figure, find the deflection at ‘A’ and the stress [15M]

distribution. Use E=150MPa and P=100 KN .

A
l A
/ Area=2000cm?

15cm p

v

A

/ Area=1000cm?

8cm

v

Vs
3 Consider the plane truss shown in figure, determine the nodal displacements, [15M]

Element forces and support reactions. Take E=2X10° N/mm?; A= 1500mm>.

20kN

b

10kN

»
»

A

2000mm

A 4

7
3000mm ZA/
4 Compute Nodal deaceme‘l_nm the three noded triangular element [15M]

Page 1 of 2



shown in figure and also determine the element strains, if the nodal
displacements are given as
U;=0.002 cm Vi=0.00lcm E=200 Gpa & v =0.25
U2=0.001 cm V2=-0.004 cm

Page 2 of 2



=)

U3;=-0.003 cm V3=0.007 cm

A

306.9)

(6,5)

(3.4

»
»

For axi-symmetric element shown in figure, determine the stiffness matrix. Let [15M]
E = 2.1x10°N/mm? and v = 0.25. The co-ordinates shown in figure are in
millimeters.

™~

(0,50}

w

-
P

1
0, O (50,0}

v

Derive the stiffness matrix for a four noded isoparametric quadrilateral element. [15M]
Estimate the temperature distribution in a fin whose cross section is [15M]
10mmx10mm and 500mm long. Take thermal conductivity as 50W/m-k and
convective heat transfer coefficient as 7SW/m?k at 25°C. The base temperature

is assumed to be constant and its value may be taken as 900°C. And also calculate

heat transfer rate?

Distinguish between lumped mass and consistent mass matrices [06M]
Derive the consistent mass matrix for an one dimensional bar element. [09M]
Tk h b nd
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o o

—. =50 0 0

5

Part A is compulsory which carriers 25 marks and Answer all questions.
Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE

Max. Marks: 75

Questions, Choosing ONE Question from each SECTION and each Question carries 10

marks. ko
PART-A (25 Marks)

What is meant by finite Element method
Name the weighted residual techniques?

Write down the expression of stiffness matrix for a truss element.
Define plane strain problem.
What is CST element?
Write down the shape functions for an axisymmetric triangular element.
Write the governing equation for a steady flow heat conduction.
Write down the expression of stiffness matrix for a beam element.
What is meant by discretization and assembling?
What is the difference between static and dynamic analysis?
PART-B (50 MARKS)

SECTION-1

Describe advantages, disadvantages and applications of finite element analysis.
OR

The following equation is available for a physical phenomena

% -10x*=5; 0<x<1, Boundary Conditions; y(0) =0, y(1) =0, Using Galarkin
method of weighted residual find an approximate solution of the above differential

equation.

SECTION-II
For the two bar truss shown in figure, determine the displacement at node 1 and
stresses in element2, Take E=70GPa, A= 200mm®.

OR
For the plane stress element shown in figure the nodal displacements are
U;=2.0mm, V;=1.0mm

[2M]
[3M]

[2M]
[3M]
[2M]
[3M]
[2M]
[3M]
[2M]
[3M]

[10M]

[10M]

[10M]

Page 1 of 3



0 mm,Vz= 1.5mm, Us=2.5mm,V3=0.5mm, Take E=210GPa, v=0.25,
t=10mm. Determine the strain-Displacement matrix [B]. [10M]

Page 2 of 3



' 200,400

" 400,100
100,100

~ SECTION-III
For axisymmetric element shown in figure, determine the strain-displacement

matrix. Let E = 2.1x10°N/mm? and v= 0.25. The co-ordinates shown in figure are
in millimeters.

s| o500
[10M]
1 2 > r
0, 0 (50, 0)
OR
Evaluate the following integral using Gaussian quadrature, so that the result is
exact. [10M]
f(r) = f—11(1+lxz +2x —sinx) dx
SECTION-1V

Estimate the temperature distribution in a fin whose cross section is 15mm X 15mm

and 500mm long. Take Thermal conductivity as SO0W/m-k and convective heat
transfer coefficient as 75 W/m?>-k at 25°C. The base temperature is assumedto be [10M]
constant and its value may be taken as 900°C. And also calculate the heat transfer

rate?

OR
For the beam loaded as shown in figure, determine the slope at the simple
supports. Take E=200GPa, I=4x10°m*.

24kN/m

/
al n@; l J, l l l v [10M]
. Sm J 5m T
) ) "
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SECTION-V
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10 Determine the Eigen values and Eigen vectors for the beam shown in figure

Armlme A-0.5m>

E=30x10°N/m> [10M]

p=0.283kg/m’

ANANANAN

. 10m Sm

\ 4
A
v

A

OR
11 Write short note on [10M]

(a) Eigen vectors for a stepped beam

(b) Evaluation of Eigen values.
kkkd
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ook ook skok

PART- A
la.  What is the shape function? Give its practical importance. [2]
b) Briefly discuss the Gherkin’s approach in solving FEA problems [3]
C) Define is axisymmetric element with 2 practical applications [2]
d. What are the differences between plane stress and plane strain problems [3]
e. Briefly discuss the advantages of Axisymmetric Elements [2]
f. Describe the shape functions in natural coordinates for 2-D Quadrilateral element. [3]
Write the governing equation for a steady flow heat conduction [2]
h. Write short notes on applications of FEM [3]
1. What are the practical importance of Eigen values and Eigen vectors [2]
J- Write the Gradient matrix[B] for CST element. [3]
PART -B
10 * 5 =50 Marks
2. SECTION-1 [5]

(a) A rod fixed at its ends is subjected to a varying body force as shown in Figure.1.
Use the Rayleigh-ritz method with an assumed displacement field u=a¢+a;x+ax> to
determine displacement u(x) and stress o(x)

9 E=1,A=1

A1

V, T

1 7,
'4.—1*&4-*1&..{

(b) Write the Potential function for a continuum under all possible loads and indicate
all the variables involved. Also express the total potential of general finite element
in terms of nodal displacements
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OR

3. An axial load P = 200X10* N is applied on a bar shown in figure, determine nodal [10]
displacements, stress in each material and reaction forces. If A= 2400 mm?, A,= 600
mm?, Az= 2000 mm?,E;=70GPa,E,=200GPa, E;=67GPa

I S
P

SECTION - 11

(a) Derive the B Matrix (relating strains and nodal displacements) for an iso parametric
triangular element with linear interpolation for the geometry as well as field variables.

b) Explain why the above element is popularly known as CST. Discuss about the
advantages and disadvantages of the element

[5]

OR

5. For the truss shown in figure establish the element stiffness matrices and assemble the [10]
global stiffness matrix for the active degrees of freedom and determine a) Nodal
displacements b) Stress in the members and c¢) The reaction at the roller support, Take
E= 100 Gpa. Area of c¢/section = 100 mm? Length = 100 cm, P = 100 kN.

SECTION-III

6. Derive the B Matrix (relating strains and nodal displacements) for an axi-Symmetric [10]
1so parametric triangular element with linear interpolation for the geometry as well as
field variables.

OR

7.(a) Consider a quadrilateral element as shown in figure, Evaluate Jacobian matrix and strain- [7]
Displacement matrix at local coordinates & =0.5, = 0.5.
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10.

(0, 40) . (30, 40)

1(0, 10) 2 (30, 10)

1

(b) Evaluate the integral [ i [3ex + 2x2 +
-1 (3x+4)

using one point and two point Gauss quadrature. [3M]

]dx

SECTION-IV

Heat is entering into a large plate at the rate of qo=-300w/m2 as shown in Figure, the
plate is 25 mm think. The outside surface of the plate is maintained at a temperature of10
OC. Using two finite elements, solve for the vector of nodal temperatures T, thermal
conductivity k=1.0 w/m’c

“Fo

Estimate the temperature profile in a fin of diameter 25 mm, whose length is 400mm.
The thermal conductivity of the fin material is 50 W/m K and heat transfer coefficient
over the surface of the fin is 50 W/m? K at 30°C. The tip is insulated and the base is
exposed to a temperature of 150 °C. Evaluate the temperatures at points separated by
100 mm each.

SECTION-V

Consider axial vibration of the steel bar shown in Fig. a) Develop the global stiffness
and mass matrices b) By hand calculations, determine the lowest natural frequency and
mode shape land 2
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A; = 1200 mm?
/
7 1

M

A, = 900 mm?2

| ——

S\

f=— 300 mm

Steel bar

E=70,000 MPa
v =03

P=T7840 Y ojne

OR

[
|
400 mm

11.  Write the step by step procedure to determine the frequencies and nodal displacements

of the steel cantilever beam shown in Fig.

600 mm
E=70,000 MPa
=03 "
p=7840 'M‘: : m:)
skkskkk

V
2774 __ 20 mm
e—| T
60 mm
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Choosing ONE Question

Part A is compulsory which carriers 25 marks and Answer all questions.
Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions,
from each SECTION and each Question carries 10 marks.

PART - A
Briefly discuss weighted residual method for giving approximate solutions for
complicated domains
Write the stiffness matrix for 1-d element with linear interpolation functions
Differentiate iso-parametric, sub-parametric, and super parametric elements?
What is the difference between plane truss and space truss?
What are the uses of natural coordinates in 2d- Quadrilateral elements
What are the suitable applications of axi-symmetric elements in FEM?
Write the governing equation for FEA formulation for a fin
Express the stiffness matrix for a 1-D conduction problem

What do you understand by mode shapes?
How principle of minimum potential energy is useful in dynamic analysis of systems
PART-B 10 *5 =50 Marks
SECTION-I

Derive the equations equilibriums for 3-D body

OR
An axial load P=300X103N is applied at 200 C to the rod as shown in Figure below.
The temperature is the raised to 600 C .
a) Assemble the K and F matrices.
b) Determine the nodal displacements and stresses.

~—— 200 mm > i < 300 mm ————'-‘
. | 2

1 ;4 —> P é EE. ¢
Z) 21 Z

(D) FIGURE 2)

Aluminum Steel
E; =70 %X 10° N/m? - E, = 200 X 10Y N/m?
Ay = 900 mm? A, = 1200 mm?

@, = 23 X 107 %per"C a, = 11.7 %X 107 %per°’C



4.

SECTION-II

a) Write the difference between CST and LST elements [3M]
b) For point P located inside the triangle shown in the figure below the shape functions

N1 and N2 are 0.15 and 0.25, respectively. Determine the x and y coordinates of point  [7M]
P.

3(3,5)
y
2(4,2)
1(1,1)
X
OR

For the configuration shown in Fig. determine the deflection at the point of load application [10M]
using a one-element 100 N used, comment on the

stress values in the e

~ 30 mm

w—p SON

20 mm

= 10mm
E = 70.000 MPa

Derive the strain displacement matrix for axisymmetric triangular element Discuss  [10M]
advantages of axisymmetric modelling in FEM
OR

Figure shows a five — member steel frame subjected to loads at the free end. The cross section  [10M]
of each member is a tube of wall thickness t=1 cm and mean radius=6cm. Determine the

following:

a) The displacement of node 3 and

b) The maximum axial compressive stress in a member

S .
=
7
S0 con '2’5 4% cm 3 10 000 N
Z,_.-—*—'_"' a4 ; 000 N
A= ]
l———— 8O e 45 cm |
(Steal)
(&)
(o)
Find the temperature distribution in the one-dimensional fin shown in Figure below [10M]

using two finite elements.



10.

11.

=5 watts

Tm = 400C Z Cm2 'OK
140°C \ @\
1cm radius
End surface A
- L=5cm -
k=70 watts
cm-°K
OR

(a) A 20-cm thick wall of an industrial furnace is constructed using fireclay bricks that
have a thermal conductivity of k =2 W/m-°C. During steady state operation, the furnace
wall has a temperature of 800°C on the inside and 300°C on the outside. If oneof the
walls of the furnace has a surface area of 2 m? (with 20-cm thickness), find the rate of
heat transfer and rate of heat loss through the wall.

(b) A metal pipe of 10-cm outer diameter carrying steam passes through a room. The
walls and the air in the room are at a temperature of 20°C while the outer surface of the
pipe is at a temperature of 250°C. If the heat transfer coefficient for free convection
from the pipe to the air is h = 20 W/m?-°C find the rate of heat loss from

the pipe.

For the two-bar truss shown in Figure below, determine the nodal displacements,
element stresses and support reactions. A force of P=1000kN is applied at node-1.
Assume E=210GPa and A=600mm?2 for each element.

4 m
Figure two-bar truss.

OR
A bar of length 1 m; cross sectional area 100 mm?2; density of 7 gm/cc and Young’s
modulus 200Gpa is fixed at both the ends. Consider the bar as three bar elements and
determine the first two natural frequencies and the corresponding mode shapes.
Discuss on the accuracy of the obtained solution

skeskskoskok
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Part A is compulsory which carriers 25 marks and Answer all questions.
Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions,
Choosing ONE Question from each SECTION and each Question carries 10 marks.
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PART-A (25 Marks)

What is meant by Engineering analysis and specify its Types [2M]
Explain finite element method? [3M]
Draw a plane truss structure. [2M]
What are the characteristics of a truss? [3M]
Define shape function. [2M]
List any four two dimensional elements. [3M]
What is Fourier’s law? [2M]
Discuss the types of heat transfer [3M]
What is consistent mass matrix? [2M]
Define Eigen values? [3M]
PART-B (50 MARKS)
SECTION-1
Explain the concept of FEM briefly and outline the steps involved in [10M]

FEM along with remembers.

OR
Consider the following fig. An axial load P=200 KN is applied as shown. Using [10M]
penalty approach for handling boundary conditions, do the following
a) Determine the nodal displacements.
b) Determine the stress in each material.
¢) Determine the reaction forces.
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|-—300mm———»-—400mm—~’
A
Z

Z £ 7

?»——-—-—1»2—-» - —- = > X
17 ® Z

Z ®

Aluminum Steel
Aq= 2400 mm? A,= 600 mm?

Ey=70 %< 10° N/m?  E,= 200 X 10° N/m?
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SECTION-II
For the two-bar truss shown in Figure below, determine the nodal displacements, [10M]
element stresses and support reactions. A force of P=1000kN is applied at node-
1. Assume E=210GPa and A=600mm? for each element.
: 2

&)

| 4 m |

Figure two-bar truss.
OR
a).Explain Iso-parametric, sub-parametricand super- parametric elements [6M]
b) Advantages of iso-parametric elements [4M]

SECTION-IIL
Explain the concept of numerical integration and its utility in generating [10M]
Isoperimetric finite element matrices.
OR
For the point P located inside the triangle, the shape functions N; and N> are [10M]
0.15 and 0.25, respectively. Determine the x and y coordinates of P.

3(3,5)

2(4,2)

1(1,1)

X

SECTION-1V
Estimate the temperature profile in a fin of diameter 25 mm, whose length is [10M]
500mm. The thermal conductivity of the fin material is 50 W/m K and heat transfer
coefficient over the surface of the fin is 40 W/m?K at 30°C. The tip is
insulated and the base is exposed to a temperature of 150 °C. Evaluate the

temperatures at points separated by 100 mm each.
OR

An axi-symmetric triangular element is subjected to the loading as shown in fig. [10M]
the load is distributed throughout the circumference and normal to the boundary.
Derive all the necessary equations and derive the nodal point loads.
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100 Mpa

S0cm

T

30 cm

‘L 50 cm 50 Mpa

SECTION-V
10 Explain the following with examples: [10M]
a) Lumped mass matrix. b) Types of vibrations.
OR
11 Determine the natural frequencies and mode shapes of a stepped bar shown in  [10M]

figure below. Assume E=300GPa and density is 7800 Kg/m®.

2
Ap=1500 mim A71200 007

7
/ 7
7 rg
Z —— X
e R .
24 200m 300m
sokkokokk
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